Hierarchically oriented organization in supramolecular peptide crystals

Nature Reviews Chemistry - Tập 3 Số 10 - Trang 567-588
Chengqian Yuan1, Wei Ji2, Ruirui Xing1, Junbai Li3, Ehud Gazit2, Xuehai Yan4
1State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
2Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
3Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
4University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Knowles, T. P. J., Oppenheim, T. W., Buell, A. K., Chirgadze, D. Y. & Welland, M. E. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat. Nanotechnol. 5, 204–207 (2010).

Karsenti, E. Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 9, 255–262 (2008).

Yao, H.-B., Fang, H.-Y., Wang, X.-H. & Yu, S.-H. Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. Chem. Soc. Rev. 40, 3764–3785 (2011).

Pelletier, O. et al. Structure of actin cross-linked with α-actinin: a network of bundles. Phys. Rev. Lett. 91, 148102 (2003).

Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

Wong, G. C. L. et al. Lamellar phase of stacked two-dimensional rafts of actin filaments. Phys. Rev. Lett. 91, 018103 (2003).

Adler-Abramovich, L. et al. Bioinspired flexible and tough layered peptide crystals. Adv. Mater. 30, 1704551 (2017).

Tao, K., Makam, P., Aizen, R. & Gazit, E. Self-assembling peptide semiconductors. Science 358, eaam9756 (2017).

Fitzpatrick, A. W. P. et al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc. Natl Acad. Sci. USA 110, 5468–5473 (2013).

Bera, S., Mondal, S., Rencus-Lazar, S. & Gazit, E. Organization of amino acids into layered supramolecular secondary structures. Acc. Chem. Res. 51, 2187–2197 (2018).

Cui, H. et al. Spontaneous and X-ray-triggered crystallization at long range in self-assembling filament networks. Science 327, 555–559 (2010).

Liu, X. et al. Transformation of dipeptide-based organogels into chiral crystals by cryogenic treatment. Angew. Chem. Int. Ed. 56, 2660–2663 (2017).

Yan, X., Li, J. & Möhwald, H. Self-assembly of hexagonal peptide microtubes and their optical waveguiding. Adv. Mater. 23, 2796–2801 (2011).

Liu, Y. et al. Self-assembled supramolecular nanotube yarn. Adv. Mater. 25, 5875–5879 (2013).

Reches, M. & Gazit, E. Controlled patterning of aligned self-assembled peptide nanotubes. Nat. Nanotechnol. 1, 195–200 (2006).

Valéry, C. et al. Biomimetic organization: octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc. Natl Acad. Sci. USA 100, 10258–10262 (2003).

Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

Li, Q., Jia, Y., Dai, L., Yang, Y. & Li, J. Controlled rod nanostructured assembly of diphenylalanine and their optical waveguide properties. ACS Nano 9, 2689–2695 (2015).

Kim, J. et al. Role of water in directing diphenylalanine assembly into nanotubes and nanowires. Adv. Mater. 22, 583–587 (2010).

Yan, X. et al. Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. Angew. Chem. Int. Ed. 46, 2431–2434 (2007).

Wang, Y. et al. Capillary force-driven, hierarchical co-assembly of dandelion-like peptide microstructures. Small 11, 2893–2902 (2015).

Su, Y. et al. A peony-flower-like hierarchical mesocrystal formed by diphenylalanine. J. Mater. Chem. 20, 6734–6740 (2010).

Peterson, D. T., Baker, H. H. & Verhoeven, J. D. Damascus steel, characterization of one damascus steel sword. Mater. Charact. 24, 355–374 (1990).

Frederix, P. W. J. M. et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 7, 30–37 (2014).

Lampel, A. et al. Polymeric peptide pigments with sequence-encoded properties. Science 356, 1064–1068 (2017).

Chan, K. H., Xue, B., Robinson, R. C. & Hauser, C. A. E. Systematic moiety variations of ultrashort peptides produce profound effects on self-assembly, nanostructure formation, hydrogelation, and phase transition. Sci. Rep. 7, 12897 (2017).

Bortolini, C. et al. Rapid growth of acetylated Aβ(16–20) into macroscopic crystals. ACS Nano 12, 5408–5416 (2018).

Tang, C., Ulijn, R. V. & Saiani, A. Effect of glycine substitution on Fmoc–diphenylalanine self-assembly and gelation properties. Langmuir 27, 14438–14449 (2011).

Ejgenberg, M. & Mastai, Y. Hierarchical superstructures of l-glutathione. Cryst. Growth Des. 18, 5063–5068 (2018).

Cenker, Ç. Ç. et al. Peptide nanotube formation: a crystal growth process. Soft Matter 8, 7463–7470 (2012).

Lu, K., Jacob, J., Thiyagarajan, P., Conticello, V. P. & Lynn, D. G. Exploiting amyloid fibril lamination for nanotube self-assembly. J. Am. Chem. Soc. 125, 6391–6393 (2003).

Wang, Y. et al. Columnar liquid crystals self-assembled by minimalistic peptides for chiral sensing and synthesis of ordered mesoporous silica. Chem. Mater. 30, 7902–7911 (2018).

Schwahn, D., Ma, Y. & Cölfen, H. Mesocrystal to single crystal transformation of d,l-alanine evidenced by small angle neutron scattering. J. Phys. Chem. C 111, 3224–3227 (2007).

Medina, D. D. & Mastai, Y. Synthesis of DL-alanine mesocrystals with a hollow morphology. Cryst. Growth Des. 8, 3646–3651 (2008).

Nemtsov, I., Mastai, Y. & Ejgenberg, M. Formation of hierarchical structures of l-glutamic acid with an l-arginine additive. Cryst. Growth Des. 18, 4054–4059 (2018).

Ma, Y., Cölfen, H. & Antonietti, M. Morphosynthesis of alanine mesocrystals by pH control. J. Phys. Chem. B 110, 10822–10828 (2006).

Ejgenberg, M. & Mastai, Y. Biomimetic crystallization of l-cystine hierarchical structures. Cryst. Growth Des. 12, 4995–5001 (2012).

Elemans, J. A. A. W., Lei, S. & De Feyter, S. Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew. Chem. Int. Ed. 48, 7298–7332 (2009).

Wang, X.-Y., Narita, A. & Müllen, K. Precision synthesis versus bulk-scale fabrication of graphenes. Nat. Rev. Chem. 2, 0100 (2017).

Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005).

Chen, J. et al. Building two-dimensional materials one row at a time: avoiding the nucleation barrier. Science 362, 1135–1139 (2018).

Kashchiev, D. Nucleation: Basic Theory with Applications. (Butterworth Heinemann, 2000).

Liyanage, W., Brennessel, W. W. & Nilsson, B. L. Spontaneous transition of self-assembled hydrogel fibrils into crystalline microtubes enables a rational strategy to stabilize the hydrogel state. Langmuir 31, 9933–9942 (2015).

Rajbhandary, A., Raymond, D. M. & Nilsson, B. L. Self-assembly, hydrogelation, and nanotube formation by cation-modified phenylalanine derivatives. Langmuir 33, 5803–5813 (2017).

Liyanage, W. & Nilsson, B. L. Substituent effects on the self-assembly/coassembly and hydrogelation of phenylalanine derivatives. Langmuir 32, 787–799 (2016).

Rajbhandary, A., Brennessel, W. W. & Nilsson, B. L. Comparison of the self-assembly behavior of Fmoc-phenylalanine and corresponding peptoid derivatives. Cryst. Growth Des. 18, 623–632 (2018).

Song, J. et al. Crystalline dipeptide nanobelts based on solid–solid phase transformation self-assembly and their polarization imaging of cells. ACS Appl. Mater. Interfaces 10, 2368–2376 (2018).

Pappas, C. G. et al. Alignment of nanostructured tripeptide gels by directional ultrasonication. Chem. Commun. 51, 8465–8468 (2015).

Lu, Q. et al. Hydrogel assembly with hierarchical alignment by balancing electrostatic forces. Adv. Mater. Interfaces 3, 1500687 (2016).

Hill, A. et al. Alignment of aromatic peptide tubes in strong magnetic fields. Adv. Mater. 19, 4474–4479 (2007).

Zhang, S. et al. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9, 594–601 (2010).

Zhan, J. et al. Supramolecular silk from a peptide hydrogel. Mater. Chem. Front. 1, 911–915 (2017).

Wall, B. D. et al. Aligned macroscopic domains of optoelectronic nanostructures prepared via shear-flow assembly of peptide hydrogels. Adv. Mater. 23, 5009–5014 (2011).

Qin, S.-Y., Pei, Y., Liu, X.-J., Zhuo, R.-X. & Zhang, X.-Z. Hierarchical self-assembly of a β-amyloid peptide derivative. J. Mater. Chem. B 1, 668–675 (2013).

Sun, B. et al. Self-assembly of ultralong aligned dipeptide single crystals. ACS Nano 11, 10489–10494 (2017).

Hu, Y. et al. Electrostatic-driven lamination and untwisting of β-sheet assemblies. ACS Nano 10, 880–888 (2016).

Wang, M., Du, L., Wu, X., Xiong, S. & Chu, P. K. Charged diphenylalanine nanotubes and controlled hierarchical self-assembly. ACS Nano 5, 4448–4454 (2011).

Manchineella, S. & Govindaraju, T. Molecular self-assembly of cyclic dipeptide derivatives and their applications. ChemPlusChem 82, 88–106 (2016).

Hu, K. et al. Tuning peptide self-assembly by an in-tether chiral center. Sci. Adv. 4, eaar5907 (2018).

Fears, K. P. et al. High-performance nanomaterials formed by rigid yet extensible cyclic β-peptide polymers. Nat. Commun. 9, 4090 (2018).

Ziganshin, M. A. et al. Thermally induced self-assembly and cyclization of l-leucyl-l-leucine in solid state. J. Phys. Chem. B 121, 8603–8610 (2017).

Manchineella, S. & Govindaraju, T. Hydrogen bond directed self-assembly of cyclic dipeptide derivatives: gelation and ordered hierarchical architectures. RSC Adv. 2, 5539–5542 (2012).

Yan, X., Su, Y., Li, J., Früh, J. & Möhwald, H. Uniaxially oriented peptide crystals for active optical waveguiding. Angew. Chem. Int. Ed. 50, 11186–11191 (2011).

Li, Y. et al. Solvothermally mediated self-assembly of ultralong peptide nanobelts capable of optical waveguiding. Small 12, 2575–2579 (2016).

Tao, K. et al. Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nat. Commun. 9, 3217 (2018).

Pianowski, Z. L., Karcher, J. & Schneider, K. Photoresponsive self-healing supramolecular hydrogels for light-induced release of DNA and doxorubicin. Chem. Commun. 52, 3143–3146 (2016).

Barman, A. K. & Verma, S. Solid state structures and solution phase self-assembly of clicked mannosylated diketopiperazines. RSC Adv. 3, 14691–14700 (2013).

Seo, M. J. et al. Reversibly thermochromic cyclic dipeptide nanotubes. Langmuir 34, 8365–8373 (2018).

Palacin, S. et al. Hydrogen-bonded tapes based on symmetrically substituted diketopiperazines:  a robust structural motif for the engineering of molecular solids. J. Am. Chem. Soc. 119, 11807–11816 (1997).

Govindaraju, T. Spontaneous self-assembly of aromatic cyclic dipeptide into fibre bundles with high thermal stability and propensity for gelation. Supramol. Chem. 23, 759–767 (2011).

Jeziorna, A. et al. Cyclic dipeptides as building units of nano- and microdevices: synthesis, properties, and structural studies. Cryst. Growth Des. 15, 5138–5148 (2015).

Govindaraju, T., Pandeeswar, M., Jayaramulu, K., Jaipuria, G. & Atreya, H. S. Spontaneous self-assembly of designed cyclic dipeptide (Phg–Phg) into two-dimensional nano- and mesosheets. Supramol. Chem. 23, 487–492 (2011).

Leclair, S. et al. Micrometer-sized hexagonal tubes self-assembled by a cyclic peptide in a liquid crystal. Angew. Chem. Int. Ed. 43, 349–353 (2004).

Amorin, M. et al. Liquid crystal organization of self-assembling cyclic peptides. Chem. Commun. 50, 688–690 (2014).

Méndez-Ardoy, A., Granja, J. R. & Montenegro, J. pH-triggered self-assembly and hydrogelation of cyclic peptide nanotubes confined in water micro-droplets. Nanoscale Horiz. 3, 391–396 (2018).

Smith, J. F., Knowles, T. P. J., Dobson, C. M., MacPhee, C. E. & Welland, M. E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl Acad. Sci. USA 103, 15806–15811 (2006).

Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324–327 (1993).

Rubin, D. J. et al. Structural, nanomechanical, and computational characterization of d,l-cyclic peptide assemblies. ACS Nano 9, 3360–3368 (2015).

Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

Parmar, A. et al. Defining the molecular structure of teixobactin analogues and understanding their role in antibacterial activities. Chem. Commun. 53, 2016–2019 (2017).

Yang, H., Wierzbicki, M., Du Bois, D. R. & Nowick, J. S. X-ray crystallographic structure of a teixobactin derivative reveals amyloid-like assembly. J. Am. Chem. Soc. 140, 14028–14032 (2018).

Cui, H., Cheetham, A. G., Pashuck, E. T. & Stupp, S. I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J. Am. Chem. Soc. 136, 12461–12468 (2014).

Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

Chen, Y., Gan, H. X. & Tong, Y. W. pH-controlled hierarchical self-assembly of peptide amphiphile. Macromolecules 48, 2647–2653 (2015).

Cui, H., Muraoka, T., Cheetham, A. G. & Stupp, S. I. Self-assembly of giant peptide nanobelts. Nano Lett. 9, 945–951 (2009).

Aggeli, A. et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers. Proc. Natl Acad. Sci. USA 98, 11857–11862 (2001).

Zhao, Y. et al. Tuning one-dimensional nanostructures of bola-like peptide amphiphiles by varying the hydrophilic amino acids. Chem. Eur. J. 22, 11394–11404 (2016).

Zhao, Y. et al. Controlling the diameters of nanotubes self-assembled from designed peptide bolaphiles. Small 14, 1703216 (2018).

Wang, M. et al. Nanoribbons self-assembled from short peptides demonstrate the formation of polar zippers between β-sheets. Nat. Commun. 9, 5118 (2018).

Pellach, M. et al. Spontaneous structural transition in phospholipid-inspired aromatic phosphopeptide nanostructures. ACS Nano 9, 4085–4095 (2015).

Pellach, M. et al. A two-tailed phosphopeptide crystallizes to form a lamellar structure. Angew. Chem. Int. Ed. 56, 3252–3255 (2017).

Moyer, T. J., Cui, H. & Stupp, S. I. Tuning nanostructure dimensions with supramolecular twisting. J. Phys. Chem. B 117, 4604–4610 (2013).

Löwik, D. W. P. M. et al. A highly ordered material from magnetically aligned peptide amphiphile nanofiber assemblies. Adv. Mater. 19, 1191–1195 (2007).

Hamley, I. W. et al. Shear alignment of bola-amphiphilic arginine-coated peptide nanotubes. Biomacromolecules 18, 141–149 (2017).

Lin, Y., Qiao, Y., Tang, P., Li, Z. & Huang, J. Controllable self-assembled laminated nanoribbons from dipeptide-amphiphile bearing azobenzene moiety. Soft Matter 7, 2762–2769 (2011).

Wan, Y., Wang, Z., Sun, J. & Li, Z. Extremely stable supramolecular hydrogels assembled from nonionic peptide amphiphiles. Langmuir 32, 7512–7518 (2016).

Deng, M., Yu, D., Hou, Y. & Wang, Y. Self-assembly of peptide-amphiphile C12–Aβ(11−17) into nanofibrils. J. Phys. Chem. B 113, 8539–8544 (2009).

Hamley, I. W. et al. Nematic and columnar ordering of a PEG–peptide conjugate in aqueous solution. Chem. Eur. J. 14, 11369–11375 (2008).

Guler, M. O., Pokorski, J. K., Appella, D. H. & Stupp, S. I. Enhanced oligonucleotide binding to self-assembled nanofibers. Bioconjugate Chem. 16, 501–503 (2005).

Ura, Y., Beierle, J. M., Leman, L. J., Orgel, L. E. & Ghadiri, M. R. Self-assembling sequence-adaptive peptide nucleic acids. Science 325, 73–77 (2009).

Berger, O. et al. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson–Crick base pairing. Nat. Nanotechnol. 10, 353 (2015).

Serpell, C. J. et al. Nucleobase peptide amphiphiles. Mater. Horiz. 1, 348–354 (2014).

Adamcik, J. et al. Microtubule-binding R3 fragment from Tau self-assembles into giant multistranded amyloid ribbons. Angew. Chem. Int. Ed. 55, 618–622 (2016).

Mondal, S. et al. Formation of functional super-helical assemblies by constrained single heptad repeat. Nat. Commun. 6, 8615 (2015).

Guterman, T. et al. Formation of bacterial pilus-like nanofibres by designed minimalistic self-assembling peptides. Nat. Commun. 7, 13482 (2016).

Gangloff, N., Ulbricht, J., Lorson, T., Schlaad, H. & Luxenhofer, R. Peptoids and polypeptoids at the frontier of supra- and macromolecular engineering. Chem. Rev. 116, 1753–1802 (2016).

Murnen, H. K., Rosales, A. M., Jaworski, J. N., Segalman, R. A. & Zuckermann, R. N. Hierarchical self-assembly of a biomimetic diblock copolypeptoid into homochiral superhelices. J. Am. Chem. Soc. 132, 16112–16119 (2010).

Hule, R. A., Nagarkar, R. P., Hammouda, B., Schneider, J. P. & Pochan, D. J. Dependence of self-assembled peptide hydrogel network structure on local fibril nanostructure. Macromolecules 42, 7137–7145 (2009).

Lamm, M. S., Rajagopal, K., Schneider, J. P. & Pochan, D. J. Laminated morphology of nontwisting β-sheet fibrils constructed via peptide self-assembly. J. Am. Chem. Soc. 127, 16692–16700 (2005).

Barritt, J. D., Younan, N. D. & Viles, J. H. N-terminally truncated amyloid-β(11–40/42) cofibrillizes with its full-length counterpart: implications for Alzheimer’s disease. Angew. Chem. Int. Ed. 56, 9816–9819 (2017).

Ni, R. & Chau, Y. Tuning the inter-nanofibril interaction to regulate the morphology and function of peptide/DNA co-assembled viral mimics. Angew. Chem. Int. Ed. 56, 9356–9360 (2017).

Raymond, D. M. & Nilsson, B. L. Multicomponent peptide assemblies. Chem. Soc. Rev. 47, 3659–3720 (2018).

Liu, K. et al. Peptide-induced hierarchical long-range order and photocatalytic activity of porphyrin assemblies. Angew. Chem. Int. Ed. 54, 500–505 (2015).

Zhou, M. et al. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30, 2523–2530 (2009).

Ji, W. et al. Regulating higher-order organization through the synergy of two self-sorted assemblies. Angew. Chem. Int. Ed. 57, 3636–3640 (2018).

Inostroza-Brito, K. E. et al. Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein–peptide system. Nat. Chem. 7, 897 (2015).

Ni, R. & Chau, Y. Structural mimics of viruses through peptide/DNA co-assembly. J. Am. Chem. Soc. 136, 17902–17905 (2014).

Jiang, T. et al. Structurally ordered nanowire formation from co-assembly of DNA origami and collagen-mimetic peptides. J. Am. Chem. Soc. 139, 14025–14028 (2017).

Xing, P., Li, P., Chen, H., Hao, A. & Zhao, Y. Understanding pathway complexity of organic micro/nanofiber growth in hydrogen-bonded coassembly of aromatic amino acids. ACS Nano 11, 4206–4216 (2017).

Wang, F. & Feng, C.-L. Stoichiometry-controlled inversion of supramolecular chirality in nanostructures co-assembled with bipyridines. Chem.Eur. J. 24, 1509–1513 (2017).

Wang, F. & Feng, C.-L. Metal-ion-mediated supramolecular chirality of l-phenylalanine based hydrogels. Angew. Chem. Int. Ed. 57, 5655–5659 (2018).

Liu, G.-F., Liu, J., Feng, C.-L. & Zhao, Y. Unexpected right-handed helical nanostructures co-assembled from l-phenylalanine derivatives and achiral bipyridines. Chem. Sci. 8, 1769–1775 (2017).

Liu, G.-F., Zhu, L.-Y., Ji, W., Feng, C.-L. & Wei, Z.-X. Inversion of the supramolecular chirality of nanofibrous structures through co-assembly with achiral molecules. Angew. Chem. Int. Ed. 55, 2411–2415 (2015).

Wang, J.-X. et al. Controlled arrays of self-assembled peptide nanostructures in solution and at interface. Langmuir 29, 6996–7004 (2013).

Freeman, R. et al. Reversible self-assembly of superstructured networks. Science 362, 808–813 (2018).

Tao, F., Han, Q., Liu, K. & Yang, P. Tuning crystallization pathways through the mesoscale assembly of biomacromolecular nanocrystals. Angew. Chem. Int. Ed. 56, 13440–13444 (2017).

Lara, C., Adamcik, J., Jordens, S. & Mezzenga, R. General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 12, 1868–1875 (2011).

Lashuel, H. A., LaBrenz, S. R., Woo, L., Serpell, L. C. & Kelly, J. W. Protofilaments, filaments, ribbons, and fibrils from peptidomimetic self-assembly:  implications for amyloid fibril formation and materials science. J. Am. Chem. Soc. 122, 5262–5277 (2000).

Yang, S. et al. Giant capsids from lattice self-assembly of cyclodextrin complexes. Nat. Commun. 8, 15856 (2017).

Van Driessche, A. E. S. et al. Molecular nucleation mechanisms and control strategies for crystal polymorph selection. Nature 556, 89–94 (2018).

Würthner, F. et al. Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem. Rev. 116, 962–1052 (2016).

Chen, S., Slattum, P., Wang, C. & Zang, L. Self-assembly of perylene imide molecules into 1D nanostructures: methods, morphologies, and applications. Chem. Rev. 115, 11967–11998 (2015).

Zhang, X., Görl, D., Stepanenko, V. & Würthner, F. Hierarchical growth of fluorescent dye aggregates in water by fusion of segmented nanostructures. Angew. Chem. Int. Ed. 53, 1270–1274 (2014).

Görl, D., Zhang, X., Stepanenko, V. & Würthner, F. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides. Nat. Commun. 6, 7009 (2015).

Percec, V. et al. Self-repairing complex helical columns generated via kinetically controlled self-assembly of dendronized perylene bisimides. J. Am. Chem. Soc. 133, 18479–18494 (2011).

Percec, V. et al. Transformation from kinetically into thermodynamically controlled self-organization of complex helical columns with 3D periodicity assembled from dendronized perylene bisimides. J. Am. Chem. Soc. 135, 4129–4148 (2013).

Partridge, B. E. et al. Increasing 3D supramolecular order by decreasing molecular order. a comparative study of helical assemblies of dendronized nonchlorinated and tetrachlorinated perylene bisimides. J. Am. Chem. Soc. 137, 5210–5224 (2015).

Sahoo, D. et al. Hierarchical self-organization of perylene bisimides into supramolecular spheres and periodic arrays thereof. J. Am. Chem. Soc. 138, 14798–14807 (2016).

Herbst, S. et al. Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases. Nat. Commun. 9, 2646 (2018).

Yagai, S. et al. Structural and electronic properties of extremely long perylene bisimide nanofibers formed through a stoichiometrically mismatched, hydrogen-bonded complexation. Small 6, 2731–2740 (2010).

Marty, R. et al. Hierarchically structured microfibers of “single stack” perylene bisimide and quaterthiophene nanowires. ACS Nano 7, 8498–8508 (2013).

Palmer, L. C. et al. Long-range rrdering of highly charged self-assembled nanofilaments. J. Am. Chem. Soc. 136, 14377–14380 (2014).

Taden, A., Landfester, K. & Antonietti, M. Crystallization of dyes by directed aggregation of colloidal intermediates:  a model case. Langmuir 20, 957–961 (2004).

Zhang, C. et al. Porphyrin supramolecular 1D structures via surfactant-assisted self-assembly. Adv. Mater. 27, 5379–5387 (2015).

Hu, J.-S., Guo, Liang, H.-P., Wan, L.-J. & Jiang, L. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J. Am. Chem. Soc. 127, 17090–17095 (2005).

Guo, P., Chen, P. & Liu, M. Porphyrin assemblies via a surfactant-assisted method: from nanospheres to nanofibers with tunable length. Langmuir 28, 15482–15490 (2012).

Qiu, Y., Chen, P. & Liu, M. Evolution of various porphyrin nanostructures via an oil/aqueous medium: controlled self-assembly, further organization, and supramolecular chirality. J. Am. Chem. Soc. 132, 9644–9652 (2010).

Kim, T., Ham, S., Lee, S. H., Hong, Y. & Kim, D. Enhancement of exciton transport in porphyrin aggregate nanostructures by controlling the hierarchical self-assembly. Nanoscale 10, 16438–16446 (2018).

Xu, G., Li, Q. & Chen, X. Nanobelts of hexagonal columnar crystal lattice through ionic self-assembly. Colloid Polym. Sci. 293, 2877–2882 (2015).

Li, H., Guan, M., Zhu, G., Yin, G. & Xu, Z. Experimental observation of fullerene crystalline growth from mesocrystal to single crystal. Cryst. Growth Des. 16, 1306–1310 (2016).

Zhang, X. & Takeuchi, M. Controlled fabrication of fullerene C60 into microspheres of nanoplates through porphyrin-polymer-assisted self-assembly. Angew. Chem. Int. Ed. 48, 9646–9651 (2009).

Zhang, X. et al. Supramolecular [60]fullerene liquid crystals formed by self-organized two-dimensional crystals. Angew. Chem. Int. Ed. 54, 114–117 (2014).

Ramos Sasselli, I., Halling, P. J., Ulijn, R. V. & Tuttle, T. Supramolecular fibers in gels can be at thermodynamic equilibrium: a simple packing model reveals preferential fibril formation versus crystallization. ACS Nano 10, 2661–2668 (2016).

Palermo, V. & Samorì, P. Molecular self-assembly across multiple length scales. Angew. Chem. Int. Ed. 46, 4428–4432 (2007).

Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

Mendes, A. C., Baran, E. T., Reis, R. L. & Azevedo, H. S. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 582–612 (2013).

Ulijn, R. V. & Smith, A. M. Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664–675 (2008).

Fichman, G. et al. Spontaneous structural transition and crystal formation in minimal supramolecular polymer model. Sci. Adv. 2, e1500827 (2016).

Dudukovic, N. A., Hudson, B. C., Paravastu, A. K. & Zukoski, C. F. Self-assembly pathways and polymorphism in peptide-based nanostructures. Nanoscale 10, 1508–1516 (2018).

Banwell, E. F. et al. Rational design and application of responsive α-helical peptide hydrogels. Nat. Mater. 8, 596–600 (2009).

González-Rodríguez, D. et al. G-quadruplex self-assembly regulated by coulombic interactions. Nat. Chem. 1, 151–155 (2009).

Faul, C. F. J. & Antonietti, M. Ionic self-assembly: facile synthesis of supramolecular materials. Adv. Mater. 15, 673–683 (2003).

Rehm, T. H. & Schmuck, C. Ion-pair induced self-assembly in aqueous solvents. Chem. Soc. Rev. 39, 3597–3611 (2010).

Jeffrey, G. A. & Saenger, W. Hydrogen Bonding in Biological Structures (Springer Science & Business Media, 2012).

Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 101, 4071–4098 (2001).

Krieg, E., Bastings, M. M. C., Besenius, P. & Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 116, 2414–2477 (2016).

Grimme, S. Do special noncovalent π–π stacking interactions really exist? Angew. Chem. Int. Ed. 47, 3430–3434 (2008).

Martinez, C. R. & Iverson, B. L. Rethinking the term “pi-stacking”. Chem. Sci. 3, 2191–2201 (2012).

Cockroft, S. L., Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. Electrostatic control of aromatic stacking interactions. J. Am. Chem. Soc. 127, 8594–8595 (2005).

Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

Ball, P. Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008).

Tao, J. et al. Energetic basis for the molecular-scale organization of bone. Proc. Natl Acad. Sci. USA 112, 326 (2015).

Manoharan, V. N. Colloidal matter: packing, geometry, and entropy. Science 349, 1253751 (2015).

Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51, 627–659 (1949).

Needleman, D. J. et al. Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces. Proc. Natl Acad. Sci. USA 101, 16099–16103 (2004).

Yao, Z. & Olvera de la Cruz, M. Electrostatic repulsion-driven crystallization model arising from filament networks. Phys. Rev. E 87, 042605 (2013).

Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 38, 231–252 (1985).

De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).