Nanofiber tổng hợp poly( $$ \varepsilon $$ -caprolactone)/nano hydroxyapatite được trang trí theo dạng bậc thang cho kỹ thuật tái tạo mô xương

Journal of Materials Science - Tập 50 - Trang 4174-4186 - 2015
Xin Jing1, Elizabeth Jin2, Hao-Yang Mi1, Wan-Ju Li2, Xiang-Fang Peng1, Lih-Sheng Turng3
1The Key Laboratory for Polymer Processing Engineering of Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, China
2Departments of Orthopedics and Rehabilitation, and Biomedical Engineering, University of Wisconsin–Madison, Madison, USA
3Wisconsin Institutes for Discovery, University of Wisconsin–Madison, Madison, USA

Tóm tắt

Xương là một nanocomposite bao gồm hai thành phần chính, nanohydroxyapatite (nHA) và collagen loại I. Mục tiêu của nghiên cứu này là mô phỏng cấu trúc nanotopography của các fibril collagen trong mô xương và điều chỉnh các chức năng tế bào của chúng thông qua kích thích ở quy mô nano. Các cấu trúc ba chiều bao gồm các nanofiber poly( $$ \varepsilon $$ -caprolactone) (PCL) và composite PCL/nHA được trang trí bởi các lớp tinh thể PCL được sắp xếp theo chu kỳ (cấu trúc shish–kebab) đã được tạo ra. Kết quả cho thấy cấu trúc nano được trang trí theo bậc không chỉ tăng cường các tính chất cơ học của scaffolds mà còn thay đổi hành vi ưa nước của bề mặt scaffolds. Tính ưa nước bề mặt được cải thiện đã tạo điều kiện cho quá trình khoáng hóa tương tự sinh học thông qua sự lắng đọng apatite khi tiếp xúc với dịch thể cơ thể mô phỏng (SBF). Dòng tế bào MG-63, một dòng tế bào u xương có hành vi tương tự như tế bào tạo xương, được sử dụng để nghiên cứu phản ứng của tế bào đối với các scaffolds. Dữ liệu chỉ ra rằng nanotopography tinh thể kebab tạo điều kiện cho sự gắn kết và phát triển của tế bào. Các xét nghiệm chức năng, nhằm định lượng hoạt tính phosphatase kiềm (ALP) và biểu hiện canxi, đã cho thấy hoạt tính ALP và biểu hiện canxi tăng lên trên các nanofiber được trang trí. Hơn nữa, so với các scaffolds khác, các tế bào trên scaffolds có cấu trúc shish–kebab PCL/nHA cho thấy sự kéo dài rõ rệt của tiền dịch bào của các sợi trong nghiên cứu cytoskeleton, cho thấy sự tương tác tốt hơn giữa tế bào và scaffolds.

Từ khóa

#xương #nanocomposite #nanohydroxyapatite #collagen loại I #kỹ thuật tái tạo mô xương #scaffolds #tế bào MG-63 #phosphatase kiềm #hoạt tính ALP #khoáng hóa.

Tài liệu tham khảo

Weiner S, Wagner HD (1998) The material bone: structure mechanical function relations. Annu Rev Mater Sci 28:271–298 Weiner S, Traub W (1986) Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett 206:262–266 Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334 Azami M, Moosavifar MJ, Baheiraei N, Moztarzadeh F, Ai J (2012) Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. J Biomed Mater Res A 100A:1347–1355 Chen JL, Chu B, Hsiao BS (2006) Mineralization of hydroxyapatite in electrospun nanofibrous poly(l-lactic acid) scaffolds. J Biomed Mater Res A 79A:307–317 Nguyen TH, Bao TQ, Park I, Lee BT (2013) A novel fibrous scaffold composed of electrospun porous poly(epsilon-caprolactone) fibers for bone tissue engineering. J Biomater Appl 28:514–528 Jegal SH, Park JH, Kim JH et al (2011) Functional composite nanofibers of poly(lactide-co-caprolactone) containing gelatin-apatite bone mimetic precipitate for bone regeneration. Acta Biomater 7:1609–1617 Phipps MC, Clem WC, Grunda JM, Dines GA, Bellis SL (2012) Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 33:524–534 Xie JW, Li XR, Lipner J et al (2010) “Aligned-to-random” nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale 2:923–926 Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621 Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, Supaphol P (2006) Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Macromol Biosci 6:70–77 Venugopal J, Low S, Choon AT, Kumar AB, Ramakrishna S (2008) Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. J Biomed Mater Res A 85A:408–417 Puppi D, Piras AM, Chiellini F et al (2011) Optimized electro- and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. J Tissue Eng Regen Med 5:253–263 Patlolla A, Arinzeh TL (2014) Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering. Biotechnol Bioeng 111:1000–1017 Fang M, Goldstein EL, Matich EK, Orr BG, Holl MMB (2013) Type I collagen self-assembly: the roles of substrate and concentration. Langmuir 29:2330–2338 Vetrone F, Variola F, de Oliveira PT et al (2009) Nanoscale oxidative patterning of metallic surfaces to modulate cell activity and fate. Nano Lett 9:659–665 Binsberg F (1966) Orientation-induced nucleation in polymer crystallization. Nature 211:516–517 Pennings AJ, Kiel AM (1965) Fractionation of Polymers by Crystallization from Solution. 3. On Morphology of Fibrillar Polyethylene Crystals Grown in Solution. Kolloid Z Z Polym 205:160–162 Li LY, Li CY, Ni CY (2006) Polymer crystallization-driven, periodic patterning on carbon nanotubes. J Am Chem Soc 128:1692–1699 Chen X, Wang WD, Cheng S, Dong B, Li CY (2013) Mimicking bone nanostructure by combining block copolymer self-assembly and 1D crystal nucleation. ACS Nano 7:8251–8257 Wang XF, Salick MR, Wang XD et al (2013) Poly(epsilon-caprolactone) nanofibers with a self-induced nanohybrid shish-kebab structure mimicking collagen fibrils. Biomacromolecules 14:3557–3569 Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915 Peng F, Yu XH, Wei M (2011) In vitro cell performance on hydroxyapatite particles/poly(l-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Acta Biomater 7:2585–2592 Rnjak-Kovacina J, Wise SG, Li Z et al (2011) Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials 32:6729–6736 Croisier F, Duwez AS, Jerome C et al (2012) Mechanical testing of electrospun PCL fibers. Acta Biomater 8:218–224 Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid silica-PVA nanofibers via sol-gel electrospinning. Langmuir 28:5834–5844 Zargarian SS, Haddadi-Asl V (2010) A nanofibrous composite scaffold of PCL/hydroxyapatite-chitosan/PVA prepared by electrospinning. Iran Polym J 19:457–468 Thomas V, Jagani S, Johnson K et al (2006) Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J Nanosci Nanotechnol 6:487–493 Liao GY, Jiang SB, Xia H, Jiang KF (2012) Preparation and characterization of aligned PLLA/PCL/HA composite fibrous membranes. J Macromol Sci A 49:946–951 Wang BB, Li B, Xiong J, Li CY (2008) Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization. Macromolecules 41:9516–9521 Thomas V, Dean DR, Jose MV, Mathew B, Chowdhury S, Vohra YK (2007) Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules 8:631–637 Ning NY, Zhang W, Zhao YS, Luo F, Fu Q (2012) Nanohybrid shish kebab structure and its effect on mechanical properties in poly(l-lactide)/carbon nanotube nanocomposite fibers. Polym Int 61:1634–1639 Hench LL, Wilson J (1993) An introduction to bioceramics. World Scientific, London Yu SC, Hariram KP, Kumar R, Cheang P, Aik KK (2005) In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Biomaterials 26:2343–2352 Rodriguez K, Renneckar S, Gatenholm P (2011) Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. Acs Appl Mater Interfaces 3:681–689 Yang F, Wolke JGC, Jansen JA (2008) Biomimetic calcium phosphate coating on electrospun poly (epsilon-caprolactone) scaffolds for bone tissue engineering. Chem Eng J 137:154–161 Li MM, Liu WW, Sun JS et al (2013) Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering. Acs Appl Mater Interfaces 5:5921–5926 Mi HY, Jing X, Salick MR, Cordie TM, Peng XF, Turng LS (2014) Morphology, mechanical properties, and mineralization of rigid thermoplastic polyurethane/hydroxyapatite scaffolds for bone tissue applications: effects of fabrication approaches and hydroxyapatite size. J Mater Sci 49:2324–2337. doi:10.1007/s10853-013-7931-3 Shor L, Guceri S, Wen XJ, Gandhi M, Sun W (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28:5291–5297 Lee HJ, Kim SE, Choi HW, Kim CW, Kim KJ, Lee SC (2007) The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly(epsilon-caprolactone)/hydroxyapatite nanocomposites. Eur Polym J 43:1602–1608 Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF (2001) Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22:87–96 Golub EE, Harrison G, Taylor AG, Camper S, Shapiro IM (1992) The role of alkaline-phosphatase in cartilage mineralization. Bone Miner 17:273–278 Woo KM, Chen VJ, Ma PX (2003) Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 67A:531–537 Shi LY, Aid R, Le Visage C, Chew SY (2012) Biomimicking polysaccharide nanofibers promote vascular phenotypes: a potential application for vascular tissue engineering. Macromol Biosci 12:395–401 Jiang X, Cao HQ, Shi LY, Ng SY, Stanton LW, Chew SY (2012) Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment. Acta Biomater 8:1290–1302 Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci USA 107:4872–4877 McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495