Hierarchical structures lead to high thermoelectric performance in Cu<sub>m+n</sub>Pb<sub>100</sub>Sb<sub>m</sub>Te<sub>100</sub>Se<sub>2m</sub> (CLAST)

Energy and Environmental Science - Tập 14 Số 1 - Trang 451-461
Siqi Wang1,2,3,4,5, Yu Xiao1,6,4, Yongjin Chen7,8,6, Shang Peng7,8,6, Dongyang Wang1,6,4, Tao Hong1,6,4, Zhi Yang6,2,5, Yuejun Sun6,9,2,5,10, Xiang Gao7,8,6, Li‐Dong Zhao1,6,4
1Beijing 100191
2Fuxin 123000
3School of Materials Science and Engineering, Beihang University
4School of Materials Science and Engineering, Beihang University, Beijing 100191, China
5School of Materials Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
6China
7Beijing 100094
8Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
9College of Construction Machinery
10Shandong Jiaotong University

Tóm tắt

Hierarchical microstructures lead to high thermoelectric performance in Cum+nPb100SbmTe100Se2m (CLAST) through synergistically optimizing carrier and phonon transport.

Từ khóa


Tài liệu tham khảo

Xiao, 2020, Science, 367, 1196, 10.1126/science.aaz9426

Zhao, 2014, Energy Environ. Sci., 7, 251, 10.1039/C3EE43099E

Shi, 2020, Chem. Rev., 120, 7399, 10.1021/acs.chemrev.0c00026

Zhou, 2017, Adv. Mater., 29, 1702676, 10.1002/adma.201702676

Wang, 2020, Sci. China Mater., 63, 1759, 10.1007/s40843-020-1407-x

Li, 2017, Sci. China: Technol. Sci., 60, 1347, 10.1007/s11431-017-9058-8

Kanatzidis, 2010, Chem. Mater., 22, 648, 10.1021/cm902195j

Qin, 2017, Rare Met., 37, 343, 10.1007/s12598-017-0991-9

Xiao, 2018, npj Quantum Mater., 3, 55, 10.1038/s41535-018-0127-y

Duong, 2016, Nat. Commun., 7, 13713, 10.1038/ncomms13713

He, 2019, Science, 365, 1418, 10.1126/science.aax5123

Dow, 2019, J. Mater. Chem. C, 7, 3787, 10.1039/C8TC06491A

You, 2019, Energy Environ. Sci., 12, 3089, 10.1039/C9EE01137D

Hu, 2014, Adv. Funct. Mater., 24, 5211, 10.1002/adfm.201400474

Shuai, 2020, Small, 16, 1906921, 10.1002/smll.201906921

Xie, 2020, Nano Energy, 69, 104395, 10.1016/j.nanoen.2019.104395

Slade, 2020, Energy Environ. Sci., 13, 1509, 10.1039/D0EE00491J

Qu, 2018, Rare Met., 37, 79, 10.1007/s12598-017-0978-6

Li, 2020, ACS Appl. Mater. Interfaces, 12, 3886, 10.1021/acsami.9b20103

Xiang, 2019, J. Mater. Chem. A, 7, 18458, 10.1039/C9TA06247E

Chang, 2018, Mater. Today Phys., 4, 50, 10.1016/j.mtphys.2018.02.005

Li, 2012, Energy Environ. Sci., 5, 8543, 10.1039/c2ee22622g

Guin, 2015, J. Mater. Chem. C, 3, 10415, 10.1039/C5TC01429H

Wu, 2014, Adv. Funct. Mater., 24, 7763, 10.1002/adfm.201402211

Tan, 2015, J. Am. Chem. Soc., 137, 5100, 10.1021/jacs.5b00837

Zhou, 2018, J. Am. Chem. Soc., 140, 15535, 10.1021/jacs.8b10448

Sarkar, 2018, ACS Energy Lett., 3, 2593, 10.1021/acsenergylett.8b01684

Pei, 2016, J. Am. Chem. Soc., 138, 16364, 10.1021/jacs.6b09568

LaLonde, 2011, Mater. Today, 14, 526, 10.1016/S1369-7021(11)70278-4

Fu, 2019, J. Mater. Chem. A, 7, 6304, 10.1039/C9TA00400A

Zhang, 2017, Energy Environ. Sci., 10, 2420, 10.1039/C7EE02530K

Tan, 2017, Adv. Energy Mater., 7, 1700099, 10.1002/aenm.201700099

Tan, 2016, Nat. Commun., 7, 12167, 10.1038/ncomms12167

Wu, 2015, Energy Environ. Sci., 8, 2056, 10.1039/C5EE01147G

Wu, 2014, Nat. Commun., 5, 4515, 10.1038/ncomms5515

Wang, 2020, J. Alloys Compd., 815, 152463, 10.1016/j.jallcom.2019.152463

Zhang, 2020, J. Phys. D: Appl. Phys., 53, 245501, 10.1088/1361-6463/ab7d6c

Zhang, 2018, Energy Environ. Sci., 11, 933, 10.1039/C8EE00112J

Xiao, 2019, Adv. Energy Mater., 9, 1900414, 10.1002/aenm.201900414

Su, 2018, Adv. Energy Mater., 8, 1800659, 10.1002/aenm.201800659

Wang, 2018, ACS Appl. Mater. Interfaces, 10, 22401, 10.1021/acsami.8b05117

Xiao, 2018, J. Am. Chem. Soc., 140, 13097, 10.1021/jacs.8b09029

Xiao, 2020, J. Am. Chem. Soc., 142, 4051, 10.1021/jacs.0c00306

Rawat, 2014, ACS Appl. Mater. Interfaces, 6, 3995, 10.1021/am405410e

Ahn, 2010, J. Am. Chem. Soc., 132, 5227, 10.1021/ja910762q

Biswas, 2011, Energy Environ. Sci., 4, 4675, 10.1039/c1ee02297k

Girard, 2012, Energy Environ. Sci., 5, 8716, 10.1039/c2ee22495j

Ballikaya, 2013, J. Mater. Chem. A, 1, 12478, 10.1039/c3ta12508d

Mukherjee, 2020, J. Alloys Compd., 817, 152729, 10.1016/j.jallcom.2019.152729

Luo, 2018, Adv. Funct. Mater., 28, 1801617, 10.1002/adfm.201801617

Zhang, 2017, J. Alloys Compd., 725, 563, 10.1016/j.jallcom.2017.07.193

Jood, 2015, J. Mater. Chem. C, 3, 10401, 10.1039/C5TC01652E

Xiao, 2018, Energy Environ. Sci., 11, 2486, 10.1039/C8EE01151F

Tan, 2019, ACS Appl. Mater. Interfaces, 11, 9197, 10.1021/acsami.8b21524

Pei, 2011, Adv. Energy Mater., 1, 291, 10.1002/aenm.201000072

Qin, 2020, APL Mater., 8, 010901, 10.1063/1.5144097

Xiao, 2017, J. Am. Chem. Soc., 139, 18732, 10.1021/jacs.7b11662

Pei, 2011, Adv. Funct. Mater., 21, 241, 10.1002/adfm.201000878

Zhang, 2017, Adv. Mater., 29, 1703148, 10.1002/adma.201703148

Kim, 2015, Proc. Natl. Acad. Sci. U. S. A., 112, 8205, 10.1073/pnas.1510231112

Zhao, 2013, Energy Environ. Sci., 6, 3346, 10.1039/c3ee42187b

Pei, 2012, J. Alloys Compd., 514, 40, 10.1016/j.jallcom.2011.10.036

LaLonde, 2011, Energy Environ. Sci., 4, 2090, 10.1039/c1ee01314a

Sun, 2019, J. Alloys Compd., 791, 786, 10.1016/j.jallcom.2019.04.001

Liu, 2019, Appl. Phys. A: Mater. Sci. Process., 125, 225, 10.1007/s00339-019-2525-9

Qin, 2020, J. Am. Chem. Soc., 142, 5901, 10.1021/jacs.0c01726

Qian, 2019, Energy Environ. Sci., 12, 1969, 10.1039/C8EE03386B

Qin, 2019, J. Am. Chem. Soc., 141, 1141, 10.1021/jacs.8b12450