Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction
Tài liệu tham khảo
Yu, 2018, Nat. Commun., 9, 2551, 10.1038/s41467-018-04746-z
Morlanés, 2016, ACS Catal., 6, 3092, 10.1021/acscatal.6b00543
Liu, 2016, Science, 352, 1210, 10.1126/science.aaf5039
Hu, 2018, Electrochem. Energy Rev., 1, 84, 10.1007/s41918-018-0003-2
Gu, 2017, Nat. Energy, 2, 16192, 10.1038/nenergy.2016.192
Wang, 2017, Angew. Chem. Int. Ed., 56, 7610, 10.1002/anie.201703066
Wang, 2016, Nat. Mater., 15, 611, 10.1038/nmat4589
Amiinu, 2017, Adv. Funct. Mater., 27, 1702300, 10.1002/adfm.201702300
Ge, 2019, Appl. Catal. B: Environ., 246, 129, 10.1016/j.apcatb.2019.01.047
Kim, 2016, J. Am. Chem. Soc., 138, 8698, 10.1021/jacs.6b04552
Jin, 2018, Nano Energy, 49, 14, 10.1016/j.nanoen.2018.04.023
Yang, 2015, Chem. Commun., 52, 990, 10.1039/C5CC08097E
Xiao, 2014, Appl. Catal. B: Environ., 154–155, 232, 10.1016/j.apcatb.2014.02.020
Lu, 2019, Electrochem. Energy Rev., 2, 105, 10.1007/s41918-018-0025-9
Mahmood, 2017, Nat. Nanotechnol., 12, 441, 10.1038/nnano.2016.304
Yuan, 2019, Nano Energy, 59, 472, 10.1016/j.nanoen.2019.02.062
Pu, 2017, Angew. Chem. Int. Ed., 56, 11559, 10.1002/anie.201704911
Pu, 2019, Energy Environ. Sci., 12, 952, 10.1039/C9EE00197B
Pu, 2016, Appl. Catal. B: Environ., 196, 193, 10.1016/j.apcatb.2016.05.027
Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b
Zhang, 2019, Appl. Catal. B: Environ., 247, 78, 10.1016/j.apcatb.2019.01.086
Liang, 2019, Nano Energy, 57, 746, 10.1016/j.nanoen.2018.12.060
Xiong, 2017, J. Mater. Chem. A, 5, 24193, 10.1039/C7TA07566A
Xiao, 2015, Adv. Energy Mater., 5, 1500985, 10.1002/aenm.201500985
Zou, 2015, Chem. Soc. Rev., 44, 5148, 10.1039/C4CS00448E
Khan, 2018, Electrochem. Energy Rev., 1, 483, 10.1007/s41918-018-0014-z
Deng, 2017, Nat. Commun., 8, 14430, 10.1038/ncomms14430
Chen, 2013, ACS Nano, 7, 10190, 10.1021/nn404444r
Sun, 2018, Small, 14, 1704137, 10.1002/smll.201704137
Yonemoto, 2014, J. Am. Chem. Soc., 136, 8895, 10.1021/ja504407e
Huang, 2012, Adv. Mater., 24, 4419, 10.1002/adma.201201680
Choi, 2012, ACS Nano, 6, 4020, 10.1021/nn3003345
Shen, 2018, Science, 359, 206, 10.1126/science.aao3403
Kim, 2008, Chem. Mater., 20, 1679, 10.1021/cm703401u
Guan, 2017, Adv. Sci., 4, 1700247, 10.1002/advs.201700247
Jiang, 2018, Small Methods, 2, 1700369, 10.1002/smtd.201700369
Li, 2018, ACS Appl. Mater. Interfaces, 10, 17140, 10.1021/acsami.8b01541
Anjum, 2017, ACS Catal., 7, 3030, 10.1021/acscatal.7b00555
Chen, 2016, ACS Nano, 10, 8851, 10.1021/acsnano.6b04725
Deng, 2015, Angew. Chem. Int. Ed., 54, 2100, 10.1002/anie.201409524
Zhang, 2016, Angew. Chem. Int. Ed., 55, 2230, 10.1002/anie.201510495
Sun, 2016, Adv. Energy Mater., 1600087, 10.1002/aenm.201600087
Liu, 2018, Chem. Commun., 54, 2502, 10.1039/C7CC09137K
Zhang, 2016, J. Am. Chem. Soc., 138, 14686, 10.1021/jacs.6b08491
Shi, 2016, Chem. Soc. Rev., 45, 1529, 10.1039/C5CS00434A
Ma, 2015, Angew. Chem. Int. Ed., 54, 14723, 10.1002/anie.201506727
Wang, 2016, Angew. Chem. Int. Ed., 55, 6919, 10.1002/anie.201602802
Jia, 2017, Adv. Mater., 29, 1700017, 10.1002/adma.201700017
Chen, 2018, ACS Catal., 8, 8866, 10.1021/acscatal.8b02212
Borup, 2007, Chem. Rev., 107, 3904, 10.1021/cr050182l
Mcenaney, 2014, Chem. Mater., 26, 4826, 10.1021/cm502035s
Wang, 2018, Nano Res., 11, 4728, 10.1007/s12274-018-2057-1
Huang, 2019, Inorg. Chem. Front., 6, 1482, 10.1039/C9QI00279K
Ojha, 2017, Catal. Sci. Technol., 7, 668, 10.1039/C6CY02406H
Xing, 2014, Adv. Mater., 26, 5702, 10.1002/adma.201401692
Zhang, 2018, ACS Appl. Mater. Interfaces, 10, 26258, 10.1021/acsami.8b07133
Li, 2017, Chem. Commun., 53, 12576, 10.1039/C7CC06660K
Zhang, 2018, Inorg. Chem., 57, 13859, 10.1021/acs.inorgchem.8b02359
Li, 2016, Nat. Commun., 7, 11204, 10.1038/ncomms11204
Zhang, 2018, Adv. Funct. Mater., 28, 1706523, 10.1002/adfm.201706523
Liang, 2019, Nano Energy, 57, 746, 10.1016/j.nanoen.2018.12.060
Yang, 2016, Angew. Chem. Int. Ed., 551, 2854
Liu, 2018, Adv. Funct. Mater., 28, 1801527, 10.1002/adfm.201801527
Yan, 2018, Adv. Mater., 30, 1704156, 10.1002/adma.201704156
Duan, 2015, ACS Nano, 9, 931, 10.1021/nn506701x
Kou, 2018, Small Methods, 2, 1700396, 10.1002/smtd.201700396
Zhang, 2017, Nano Lett., 17, 3097, 10.1021/acs.nanolett.7b00533
Bae, 2017, Adv. Energy Mater., 7, 1601492, 10.1002/aenm.201601492
Zhao, 2015, Adv. Mater., 27, 3541, 10.1002/adma.201500945
Yu, 2015, Appl. Catal. A: Gen., 507, 109, 10.1016/j.apcata.2015.09.023
Wang, 2019, Appl. Catal. B: Environ., 251, 162, 10.1016/j.apcatb.2019.03.065
Sevilla, 2014, ACS Nano, 8, 5069, 10.1021/nn501124h
Wei, 2018, ACS Appl. Energy Mater., 1, 331, 10.1021/acsaem.7b00299
Sun, 2018, Angew. Chem. Int. Ed., 57, 2427, 10.1002/anie.201712221
Huang, 2018, Adv. Energy Mater., 8, 1701601, 10.1002/aenm.201701601
Yang, 2017, Nano Energy, 41, 772, 10.1016/j.nanoen.2017.03.032
Yang, 2017, ACS Catal., 7, 3824, 10.1021/acscatal.7b00587
Zhu, 2017, ACS Catal., 7, 3540, 10.1021/acscatal.7b00120
Reddy, 2016, Appl. Catal. B: Environ., 194, 16, 10.1016/j.apcatb.2016.04.007
Zhang, 2017, ACS Appl. Mater. Interfaces, 9, 16270, 10.1021/acsami.7b03823
Lin, 2016, Chem. Sci., 7, 3399, 10.1039/C6SC00077K
Pu, 2016, Nanoscale, 8, 17256, 10.1039/C6NR05564H
Tang, 2015, ACS Catal., 5, 6956, 10.1021/acscatal.5b01803