Hierarchical metal-peptide assemblies with chirality-encoded spiral architecture and catalytic activity

Science in China Series B: Chemistry - Tập 66 - Trang 228-241 - 2022
Jiayu Liu1, Jiaxing Zhang1, Liwei Zhang1, Yuefei Wang1,2, Hao Wei1, Yuhe Shen1, Jiwei Min1, Xi Rong1, Wei Qi1,3,2, Rongxin Su1,3,2, Zhimin He1
1School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, China
2Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, China
3Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China

Tóm tắt

We report the coordination assembly of the ferrocene-diphenylalanine (Fc-FF) with divalent copper ions (Cu2+) into metal-peptide assemblies (MPAs) with hierarchical spiral architectures. The MPA particles are composed of helically organized nanofibers which can be correlated to the logarithmic spirals. The MPAs are hierarchically porous with abundant Fc and Cu2+ active sites and show much higher catalytic activity than natural laccase toward the decolorization reaction. Moreover, a series of hierarchical structures of the MPAs can be synthesized by controlling the temperature and enantiomeric excess (ee). The peptide enantiomers with higher ee values will self-assemble into highly complex and ordered structures, which show higher surface area and porosity and thus enhanced catalytic activity compared with those assembled by peptides with lower ee values. The results provide new insights into the vital role of chirality in directing the self-assembly of biomolecules into highly ordered complex functional structures.

Tài liệu tham khảo

Jiang W, Qu ZB, Kumar P, Vecchio D, Wang Y, Ma Y, Bahng JH, Bernardino K, Gomes WR, Colombari FM, Lozada-Blanco A, Veksler M, Marino E, Simon A, Murray C, Muniz SR, de Moura AF, Kotov NA. Science, 2020, 368: 642–648 Noorduin WL, Grinthal A, Mahadevan L, Aizenberg J. Science, 2013, 340: 832–837 Jiang W, Pacella MS, Athanasiadou D, Nelea V, Vali H, Hazen RM, Gray JJ, McKee MD. Nat Commun, 2017, 8: 15066 Liu M, Zhang L, Wang T. Chem Rev, 2015, 115: 7304–7397 Philp D, Stoddart JF. Angew Chem Int Ed, 1996, 35: 1154–1196 Shoulders MD, Raines RT. Annu Rev Biochem, 2009, 78: 929–958 Dobson CM. Nature, 2003, 426: 884–890 Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Chem Soc Rev, 2017, 46: 4661–4708 Yuan C, Ji W, Xing R, Li J, Gazit E, Yan X. Nat Rev Chem, 2019, 3: 567–588 Hartgerink JD, Beniash E, Stupp SI. Science, 2001, 294: 1684–1688 Gelain F, Luo Z, Zhang S. Chem Rev, 2020, 120: 13434–13460 Reches M, Gazit E. Science, 2003, 300: 625–627 Omosun TO, Hsieh MC, Childers WS, Das D, Mehta AK, Anthony NR, Pan T, Grover MA, Berland KM, Lynn DG. Nat Chem, 2017, 9: 805–809 Hamley IW. Angew Chem Int Ed, 2014, 53: 6866–6881 Lara C, Reynolds NP, Berryman JT, Xu A, Zhang A, Mezzenga R. J Am Chem Soc, 2014, 136: 4732–4739 Cui H, Cheetham AG, Pashuck ET, Stupp SI. J Am Chem Soc, 2014, 136: 12461–12468 Wang M, Zhou P, Wang J, Zhao Y, Ma H, Lu JR, Xu H. J Am Chem Soc, 2017, 139: 4185–4194 Wang Y, Qi W, Huang R, Yang X, Wang M, Su R, He Z. J Am Chem Soc, 2015, 137: 7869–7880 Zozulia O, Dolan MA, Korendovych IV. Chem Soc Rev, 2018, 47: 3621–3639 Levin A, Hakala TA, Schnaider L, Bernardes GJL, Gazit E, Knowles TPJ. Nat Rev Chem, 2020, 4: 615–634 Liu GF, Zhang D, Feng CL. Angew Chem Int Ed, 2014, 53: 7789–7793 Cui H, Pashuck ET, Velichko YS, Weigand SJ, Cheetham AG, Newcomb CJ, Stupp SI. Science, 2010, 327: 555–559 Nyström G, Arcari M, Mezzenga R. Nat Nanotech, 2018, 13: 330–336 Wang Y, Qi W, Wang J, Li Q, Yang X, Zhang J, Liu X, Huang R, Wang M, Su R, He Z. Chem Mater, 2018, 30: 7902–7911 Reches M, Gazit E. Nat Nanotech, 2006, 1: 195–200 Adler-Abramovich L, Aronov D, Beker P, Yevnin M, Stempler S, Buzhansky L, Rosenman G, Gazit E. Nat Nanotech, 2009, 4: 849–854 Ryu J, Park CB. Adv Mater, 2008, 20: 3754–3758 Wang Y, Li Q, Zhang J, Qi W, You S, Su R, He Z. ACS Nano, 2021, 15: 9827–9840 Li Q, Zhang J, Wang Y, Zhang G, Qi W, You S, Su R, He Z. Nano Lett, 2021, 21: 6406–6415 Walker DR, Hulgan SAH, Peterson CM, Li IC, Gonzalez KJ, Hartgerink JD. Nat Chem, 2021, 13: 260–269 Chen Y, Yang Y, Orr AA, Makam P, Redko B, Haimov E, Wang Y, Shimon LJW, Rencus-Lazar S, Ju M, Tamamis P, Dong H, Gazit E. Angew Chem Int Ed, 2021, 60: 17164–17170 Swanekamp RJ, DiMaio JTM, Bowerman CJ, Nilsson BL. J Am Chem Soc, 2012, 134: 5556–5559 Xu F, Khan IJ, McGuinness K, Parmar AS, Silva T, Murthy NS, Nanda V. J Am Chem Soc, 2013, 135: 18762–18765 Garcia AM, Iglesias D, Parisi E, Styan KE, Waddington LJ, Deganutti C, De Zorzi R, Grassi M, Melchionna M, Vargiu AV, Marchesan S. Chem, 2018, 4: 1862–1876 Kralj S, Bellotto O, Parisi E, Garcia AM, Iglesias D, Semeraro S, Deganutti C, D’Andrea P, Vargiu AV, Geremia S, De Zorzi R, Marchesan S. ACS Nano, 2020, 14: 16951–16961 Garcia AM, Melchionna M, Bellotto O, Kralj S, Semeraro S, Parisi E, Iglesias D, D’Andrea P, De Zorzi R, Vargiu AV, Marchesan S. ACS Nano, 2021, 15: 3015–3025 Chen Y, Orr AA, Tao K, Wang Z, Ruggiero A, Shimon LJW, Schnaider L, Goodall A, Rencus-Lazar S, Gilead S, Slutsky I, Tamamis P, Tan Z, Gazit E. ACS Nano, 2020, 14: 2798–2807 Rabone J, Yue YF, Chong SY, Stylianou KC, Bacsa J, Bradshaw D, Darling GR, Berry NG, Khimyak YZ, Ganin AY, Wiper P, Claridge JB, Rosseinsky MJ. Science, 2010, 329: 1053–1057 Schnitzer T, Paenurk E, Trapp N, Gershoni-Poranne R, Wennemers H. J Am Chem Soc, 2021, 143: 644–648 Sawada T, Matsumoto A, Fujita M. Angew Chem, 2014, 126: 7356–7360 Navarro-Sánchez J, Argente-García AI, Moliner-Martínez Y, Roca-Sanjuán D, Antypov D, Campíns-Falcó P, Rosseinsky MJ, MartíGastaldo C. J Am Chem Soc, 2017, 139: 4294–4297 Rufo CM, Moroz YS, Moroz OV, Stöhr J, Smith TA, Hu X, DeGrado WF, Korendovych IV. Nat Chem, 2014, 6: 303–309 Dey S, Misra R, Saseendran A, Pahan S, Gopi HN. Angew Chem Int Ed, 2021, 60: 9863–9868 Ji W, Yuan C, Zilberzwige-Tal S, Xing R, Chakraborty P, Tao K, Gilead S, Yan X, Gazit E. ACS Nano, 2019, 13: 7300–7309 Sawada T, Fujita M. Chem, 2020, 6: 1861–1876 Liu K, Yuan C, Zou Q, Xie Z, Yan X. Angew Chem Int Ed, 2017, 56: 7876–7880 Wang Y, Huang R, Qi W, Wu Z, Su R, He Z. Nanotechnology, 2013, 24: 465603 Wang C, Fei J, Wang K, Li J. Angew Chem Int Ed, 2020, 59: 18960–18963 Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE. Nature, 2020, 585: 357–362 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, Vijaykumar A, Bardelli AP, Rothberg A, Hilboll A, Kloeckner A, Scopatz A, Lee A, Rokem A, Woods CN, Fulton C, Masson C, Häggström C, Fitzgerald C, Nicholson DA, Hagen DR, Pasechnik DV, Olivetti E, Martin E, Wieser E, Silva F, Lenders F, Wilhelm F, Young G, Price GA, Ingold GL, Allen GE, Lee GR, Audren H, Probst I, Dietrich JP, Silterra J, Webber JT, Slavič J, Nothman J, Buchner J, Kulick J, Schönberger JL, de Miranda Cardoso JV, Reimer J, Harrington J, Rodríguez JLC, Nunez-Iglesias J, Kuczynski J, Tritz K, Thoma M, Newville M, Kümmerer M, Bolingbroke M, Tartre M, Pak M, Smith NJ, Nowaczyk N, Shebanov N, Pavlyk O, Brodtkorb PA, Lee P, McGibbon RT, Feldbauer R, Lewis S, Tygier S, Sievert S, Vigna S, Peterson S, More S, Pudlik T, Oshima T, Pingel TJ, Robitaille TP, Spura T, Jones TR, Cera T, Leslie T, Zito T, Krauss T, Upadhyay U, Halchenko YO, Vázquez-Baeza Y. Nat Methods, 2020, 17: 261–272 Hunter JD. Comput Sci Eng, 2007, 9: 90–95 Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. SoftwareX, 2015, 1–2: 19–25 Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE. Proteins, 2010, 78: 1950–1958 Zhao Y, Truhlar DG. J Chem Phys, 2006, 125: 194101 Weigend F, Ahlrichs R. Phys Chem Chem Phys, 2005, 7: 3297–3305 Frisch MJ, Trucks GW, Schlegel J, et al. Gaussian 09, Revision C.01. Wallingford CT: Gaussian, Inc., 2016 Lu T. Sobtop, dev 3.1. 2022, http://sobereva.com/soft/Sobtop Allen AEA, Payne MC, Cole DJ. J Chem Theor Comput, 2018, 14: 274–281 Darden T, York D, Pedersen L. J Chem Phys, 1993, 98: 10089–10092 Humphrey W, Dalke A, Schulten K. J Mol Graphics, 1996, 14: 33–38 Gao J, Gu C. IEEE Access, 2019, 7: 140391–140401 Yuan C, Levin A, Chen W, Xing R, Zou Q, Herling TW, Challa PK, Knowles TPJ, Yan X. Angew Chem Int Ed, 2019, 58: 18116–18123 Levin A, Mason TO, Adler-Abramovich L, Buell AK, Meisl G, Galvagnion C, Bram Y, Stratford SA, Dobson CM, Knowles TPJ, Gazit E. Nat Commun, 2014, 5: 5219 Song S, Zhou H, Ye S, Tam J, Howe JY, Manners I, Winnik MA. Angew Chem Int Ed, 2021, 60: 10950–10956 Chen T, Dou JH, Yang L, Sun C, Libretto NJ, Skorupskii G, Miller JT, Dincä M. J Am Chem Soc, 2020, 142: 12367–12373 Chen D, Li B, Jiang L, Li Y, Yang Y, Luo Z, Wang J. ACS Appl Bio Mater, 2020, 3: 4081–4094 Zheng G, Xing Z, Gao X, Nie C, Xu Z, Ju Z. Appl Surf Sci, 2021, 559: 149701 Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science, 2013, 341: 1230444 Oozeerally R, Burnett DL, Chamberlain TW, Kashtiban RJ, Huband S, Walton RI, Degirmenci V. ChemCatChem, 2021, 13: 2517–2529