Hierarchical metal-peptide assemblies with chirality-encoded spiral architecture and catalytic activity
Tóm tắt
We report the coordination assembly of the ferrocene-diphenylalanine (Fc-FF) with divalent copper ions (Cu2+) into metal-peptide assemblies (MPAs) with hierarchical spiral architectures. The MPA particles are composed of helically organized nanofibers which can be correlated to the logarithmic spirals. The MPAs are hierarchically porous with abundant Fc and Cu2+ active sites and show much higher catalytic activity than natural laccase toward the decolorization reaction. Moreover, a series of hierarchical structures of the MPAs can be synthesized by controlling the temperature and enantiomeric excess (ee). The peptide enantiomers with higher ee values will self-assemble into highly complex and ordered structures, which show higher surface area and porosity and thus enhanced catalytic activity compared with those assembled by peptides with lower ee values. The results provide new insights into the vital role of chirality in directing the self-assembly of biomolecules into highly ordered complex functional structures.
Tài liệu tham khảo
Jiang W, Qu ZB, Kumar P, Vecchio D, Wang Y, Ma Y, Bahng JH, Bernardino K, Gomes WR, Colombari FM, Lozada-Blanco A, Veksler M, Marino E, Simon A, Murray C, Muniz SR, de Moura AF, Kotov NA. Science, 2020, 368: 642–648
Noorduin WL, Grinthal A, Mahadevan L, Aizenberg J. Science, 2013, 340: 832–837
Jiang W, Pacella MS, Athanasiadou D, Nelea V, Vali H, Hazen RM, Gray JJ, McKee MD. Nat Commun, 2017, 8: 15066
Liu M, Zhang L, Wang T. Chem Rev, 2015, 115: 7304–7397
Philp D, Stoddart JF. Angew Chem Int Ed, 1996, 35: 1154–1196
Shoulders MD, Raines RT. Annu Rev Biochem, 2009, 78: 929–958
Dobson CM. Nature, 2003, 426: 884–890
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Chem Soc Rev, 2017, 46: 4661–4708
Yuan C, Ji W, Xing R, Li J, Gazit E, Yan X. Nat Rev Chem, 2019, 3: 567–588
Hartgerink JD, Beniash E, Stupp SI. Science, 2001, 294: 1684–1688
Gelain F, Luo Z, Zhang S. Chem Rev, 2020, 120: 13434–13460
Reches M, Gazit E. Science, 2003, 300: 625–627
Omosun TO, Hsieh MC, Childers WS, Das D, Mehta AK, Anthony NR, Pan T, Grover MA, Berland KM, Lynn DG. Nat Chem, 2017, 9: 805–809
Hamley IW. Angew Chem Int Ed, 2014, 53: 6866–6881
Lara C, Reynolds NP, Berryman JT, Xu A, Zhang A, Mezzenga R. J Am Chem Soc, 2014, 136: 4732–4739
Cui H, Cheetham AG, Pashuck ET, Stupp SI. J Am Chem Soc, 2014, 136: 12461–12468
Wang M, Zhou P, Wang J, Zhao Y, Ma H, Lu JR, Xu H. J Am Chem Soc, 2017, 139: 4185–4194
Wang Y, Qi W, Huang R, Yang X, Wang M, Su R, He Z. J Am Chem Soc, 2015, 137: 7869–7880
Zozulia O, Dolan MA, Korendovych IV. Chem Soc Rev, 2018, 47: 3621–3639
Levin A, Hakala TA, Schnaider L, Bernardes GJL, Gazit E, Knowles TPJ. Nat Rev Chem, 2020, 4: 615–634
Liu GF, Zhang D, Feng CL. Angew Chem Int Ed, 2014, 53: 7789–7793
Cui H, Pashuck ET, Velichko YS, Weigand SJ, Cheetham AG, Newcomb CJ, Stupp SI. Science, 2010, 327: 555–559
Nyström G, Arcari M, Mezzenga R. Nat Nanotech, 2018, 13: 330–336
Wang Y, Qi W, Wang J, Li Q, Yang X, Zhang J, Liu X, Huang R, Wang M, Su R, He Z. Chem Mater, 2018, 30: 7902–7911
Reches M, Gazit E. Nat Nanotech, 2006, 1: 195–200
Adler-Abramovich L, Aronov D, Beker P, Yevnin M, Stempler S, Buzhansky L, Rosenman G, Gazit E. Nat Nanotech, 2009, 4: 849–854
Ryu J, Park CB. Adv Mater, 2008, 20: 3754–3758
Wang Y, Li Q, Zhang J, Qi W, You S, Su R, He Z. ACS Nano, 2021, 15: 9827–9840
Li Q, Zhang J, Wang Y, Zhang G, Qi W, You S, Su R, He Z. Nano Lett, 2021, 21: 6406–6415
Walker DR, Hulgan SAH, Peterson CM, Li IC, Gonzalez KJ, Hartgerink JD. Nat Chem, 2021, 13: 260–269
Chen Y, Yang Y, Orr AA, Makam P, Redko B, Haimov E, Wang Y, Shimon LJW, Rencus-Lazar S, Ju M, Tamamis P, Dong H, Gazit E. Angew Chem Int Ed, 2021, 60: 17164–17170
Swanekamp RJ, DiMaio JTM, Bowerman CJ, Nilsson BL. J Am Chem Soc, 2012, 134: 5556–5559
Xu F, Khan IJ, McGuinness K, Parmar AS, Silva T, Murthy NS, Nanda V. J Am Chem Soc, 2013, 135: 18762–18765
Garcia AM, Iglesias D, Parisi E, Styan KE, Waddington LJ, Deganutti C, De Zorzi R, Grassi M, Melchionna M, Vargiu AV, Marchesan S. Chem, 2018, 4: 1862–1876
Kralj S, Bellotto O, Parisi E, Garcia AM, Iglesias D, Semeraro S, Deganutti C, D’Andrea P, Vargiu AV, Geremia S, De Zorzi R, Marchesan S. ACS Nano, 2020, 14: 16951–16961
Garcia AM, Melchionna M, Bellotto O, Kralj S, Semeraro S, Parisi E, Iglesias D, D’Andrea P, De Zorzi R, Vargiu AV, Marchesan S. ACS Nano, 2021, 15: 3015–3025
Chen Y, Orr AA, Tao K, Wang Z, Ruggiero A, Shimon LJW, Schnaider L, Goodall A, Rencus-Lazar S, Gilead S, Slutsky I, Tamamis P, Tan Z, Gazit E. ACS Nano, 2020, 14: 2798–2807
Rabone J, Yue YF, Chong SY, Stylianou KC, Bacsa J, Bradshaw D, Darling GR, Berry NG, Khimyak YZ, Ganin AY, Wiper P, Claridge JB, Rosseinsky MJ. Science, 2010, 329: 1053–1057
Schnitzer T, Paenurk E, Trapp N, Gershoni-Poranne R, Wennemers H. J Am Chem Soc, 2021, 143: 644–648
Sawada T, Matsumoto A, Fujita M. Angew Chem, 2014, 126: 7356–7360
Navarro-Sánchez J, Argente-García AI, Moliner-Martínez Y, Roca-Sanjuán D, Antypov D, Campíns-Falcó P, Rosseinsky MJ, MartíGastaldo C. J Am Chem Soc, 2017, 139: 4294–4297
Rufo CM, Moroz YS, Moroz OV, Stöhr J, Smith TA, Hu X, DeGrado WF, Korendovych IV. Nat Chem, 2014, 6: 303–309
Dey S, Misra R, Saseendran A, Pahan S, Gopi HN. Angew Chem Int Ed, 2021, 60: 9863–9868
Ji W, Yuan C, Zilberzwige-Tal S, Xing R, Chakraborty P, Tao K, Gilead S, Yan X, Gazit E. ACS Nano, 2019, 13: 7300–7309
Sawada T, Fujita M. Chem, 2020, 6: 1861–1876
Liu K, Yuan C, Zou Q, Xie Z, Yan X. Angew Chem Int Ed, 2017, 56: 7876–7880
Wang Y, Huang R, Qi W, Wu Z, Su R, He Z. Nanotechnology, 2013, 24: 465603
Wang C, Fei J, Wang K, Li J. Angew Chem Int Ed, 2020, 59: 18960–18963
Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE. Nature, 2020, 585: 357–362
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, Vijaykumar A, Bardelli AP, Rothberg A, Hilboll A, Kloeckner A, Scopatz A, Lee A, Rokem A, Woods CN, Fulton C, Masson C, Häggström C, Fitzgerald C, Nicholson DA, Hagen DR, Pasechnik DV, Olivetti E, Martin E, Wieser E, Silva F, Lenders F, Wilhelm F, Young G, Price GA, Ingold GL, Allen GE, Lee GR, Audren H, Probst I, Dietrich JP, Silterra J, Webber JT, Slavič J, Nothman J, Buchner J, Kulick J, Schönberger JL, de Miranda Cardoso JV, Reimer J, Harrington J, Rodríguez JLC, Nunez-Iglesias J, Kuczynski J, Tritz K, Thoma M, Newville M, Kümmerer M, Bolingbroke M, Tartre M, Pak M, Smith NJ, Nowaczyk N, Shebanov N, Pavlyk O, Brodtkorb PA, Lee P, McGibbon RT, Feldbauer R, Lewis S, Tygier S, Sievert S, Vigna S, Peterson S, More S, Pudlik T, Oshima T, Pingel TJ, Robitaille TP, Spura T, Jones TR, Cera T, Leslie T, Zito T, Krauss T, Upadhyay U, Halchenko YO, Vázquez-Baeza Y. Nat Methods, 2020, 17: 261–272
Hunter JD. Comput Sci Eng, 2007, 9: 90–95
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. SoftwareX, 2015, 1–2: 19–25
Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE. Proteins, 2010, 78: 1950–1958
Zhao Y, Truhlar DG. J Chem Phys, 2006, 125: 194101
Weigend F, Ahlrichs R. Phys Chem Chem Phys, 2005, 7: 3297–3305
Frisch MJ, Trucks GW, Schlegel J, et al. Gaussian 09, Revision C.01. Wallingford CT: Gaussian, Inc., 2016
Lu T. Sobtop, dev 3.1. 2022, http://sobereva.com/soft/Sobtop
Allen AEA, Payne MC, Cole DJ. J Chem Theor Comput, 2018, 14: 274–281
Darden T, York D, Pedersen L. J Chem Phys, 1993, 98: 10089–10092
Humphrey W, Dalke A, Schulten K. J Mol Graphics, 1996, 14: 33–38
Gao J, Gu C. IEEE Access, 2019, 7: 140391–140401
Yuan C, Levin A, Chen W, Xing R, Zou Q, Herling TW, Challa PK, Knowles TPJ, Yan X. Angew Chem Int Ed, 2019, 58: 18116–18123
Levin A, Mason TO, Adler-Abramovich L, Buell AK, Meisl G, Galvagnion C, Bram Y, Stratford SA, Dobson CM, Knowles TPJ, Gazit E. Nat Commun, 2014, 5: 5219
Song S, Zhou H, Ye S, Tam J, Howe JY, Manners I, Winnik MA. Angew Chem Int Ed, 2021, 60: 10950–10956
Chen T, Dou JH, Yang L, Sun C, Libretto NJ, Skorupskii G, Miller JT, Dincä M. J Am Chem Soc, 2020, 142: 12367–12373
Chen D, Li B, Jiang L, Li Y, Yang Y, Luo Z, Wang J. ACS Appl Bio Mater, 2020, 3: 4081–4094
Zheng G, Xing Z, Gao X, Nie C, Xu Z, Ju Z. Appl Surf Sci, 2021, 559: 149701
Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science, 2013, 341: 1230444
Oozeerally R, Burnett DL, Chamberlain TW, Kashtiban RJ, Huband S, Walton RI, Degirmenci V. ChemCatChem, 2021, 13: 2517–2529