Hierarchical electrospun nanofibers treated by solvent vapor annealing as air filtration mat for high-efficiency PM2.5 capture

Science China Materials - Tập 62 Số 3 - Trang 423-436 - 2019
Xinxin Huang1, Tifeng Jiao1, Qingqing Liu2, Lexin Zhang2, Jingxin Zhou2, Bingbing Li3, Qiuming Peng1
1State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
2Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
3Department of Chemistry, Science of Advanced Materials Doctoral Program, Central Michigan University, Mount Pleasant, MI 48859, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhang R, Jing J, Tao J, et al. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmos Chem Phys, 2013, 13: 7053–7074

Li K, Jiao T, Xing R, et al. Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci China Mater, 2018, 61: 728–736

Cheng C. Interfacial behaviors of PMMA-PEO block copolymers at the air/water interface. Sci China Ser B, 2005, 48: 567–573

Zhao H, Jiao T, Zhang L, et al. Preparation and adsorption capacity evaluation of graphene oxide-chitosan composite hydrogels. Sci China Mater, 2015, 58: 811–818

Sun Z, Liao T, Kou L. Strategies for designing metal oxide nanostructures. Sci China Mater, 2017, 60: 1–24

Liang Q, Li Z, Bai Y, et al. Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Sci China Mater, 2017, 60: 109–118

Wang D, Wang R, Liu L, et al. Down-shifting luminescence of water soluble NaYF4:Eu3+@Ag core-shell nanocrystals for fluorescence turn-on detection of glucose. Sci China Mater, 2017, 60: 68–74

Streets DG, Wu Y, Chin M. Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophys Res Lett, 2006, 33: 292–306

Harrison RM, Yin J. Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ, 2000, 249: 85–101

Chow JC, Watson JG, Mauderly JL, et al. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Association, 2006, 56: 1368–1380

Betha R, Behera SN, Balasubramanian R. 2013 Southeast Asian smoke haze: Fractionation of particulate-bound elements and associated health risk. Environ Sci Technol, 2014, 48: 4327–4335

Wu S, Deng F, Wei H, et al. Association of cardiopulmonary health effects with source-appointed ambient fine particulate in Beijing, China: A combined analysis from the healthy volunteer natural relocation (HVNR) study. Environ Sci Technol, 2014, 48: 3438–3448

Brook RD, Rajagopalan S, Pope CA, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation, 2010, 121: 2331–2378

Anenberg SC, Horowitz LW, Tong DQ, et al. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ Health Perspect, 2010, 118: 1189–1195

Timonen KL, Vanninen E, de Hartog J, et al. Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study. J Expo Sci Environ Epidemiol, 2006, 16: 332–341

Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996, 7: 216–223

Si Y, Wang X, Li Y, et al. Optimized colorimetric sensor strip for mercury(II) assay using hierarchical nanostructured conjugated polymers. J Mater Chem A, 2014, 2: 645–652

Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater, 2004, 16: 1151–1170

Lin J, Ding B, Yang J, et al. Subtle regulation of the micro- and nanostructures of electrospun polystyrene fibers and their application in oil absorption. Nanoscale, 2012, 4: 176–182

Matulevicius J, Kliucininkas L, Prasauskas T, et al. The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. J Aerosol Sci, 2016, 92: 27–37

Li J, Gao F, Liu LQ, et al. Needleless electro-spun nanofibers used for filtration of small particles. Express Polym Lett, 2013, 7: 683–689

Kim HJ, Pant HR, Choi NJ, et al. Composite electrospun fly ash/polyurethane fibers for absorption of volatile organic compounds from air. Chem Eng J, 2013, 230: 244–250

Scholten E, Bromberg L, Rutledge GC, et al. Electrospun polyurethane fibers for absorption of volatile organic compounds from air. ACS Appl Mater Interfaces, 2011, 3: 3902–3909

Sambaer W, Zatloukal M, Kimmer D. 3D air filtration modeling for nanofiber based filters in the ultrafine particle size range. Chem Eng Sci, 2012, 82: 299–311

Barhate RS, Loong CK, Ramakrishna S. Preparation and characterization of nanofibrous filtering media. J Membrane Sci, 2006, 283: 209–218

Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers. Colloids Surfs A-Physicochem Eng Aspects, 2001, 187–188: 469–481

Liu C, Hsu PC, Lee HW, et al. Transparent air filter for highefficiency PM2.5 capture. Nat Commun, 2015, 6: 6205

Wang Z, Zhao C, Pan Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. J Colloid Interface Sci, 2015, 441: 121–129

Huang ZM, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci Tech, 2003, 63: 2223–2253

Ramakrishna S, Fujihara K, Teo WE, et al. Electrospun nanofibers: solving global issues. Mater Today, 2006, 9: 40–50

Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotech Adv, 2010, 28: 325–347

Kaur S, Sundarrajan S, Rana D, et al. Review: the characterization of electrospun nanofibrous liquid filtration membranes. J Mater Sci, 2014, 49: 6143–6159

Uyar T, Havelund R, Nur Y, et al. Molecular filters based on cyclodextrin functionalized electrospun fibers. J Membrane Sci, 2009, 332: 129–137

Desai K, Kit K, Li J, et al. Nanofibrous chitosan non-wovens for filtration applications. Polymer, 2009, 50: 3661–3669

Kadam VV, Wang L, Padhye R. Electrospun nanofibre materials to filter air pollutants–A review. J Industrial Textiles, 2018, 47: 2253–2280

Wang N, Zhu Z, Sheng J, et al. Superamphiphobic nanofibrous membranes for effective filtration of fine particles. J Colloid Interface Sci, 2014, 428: 41–48

Wang N, Raza A, Si Y, et al. Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration. J Colloid Interface Sci, 2013, 398: 240–246

Kayaci F, Uyar T. Electrospun polyester/cyclodextrin nanofibers for entrapment of volatile organic compounds. Polym Eng Sci, 2014, 54: 2970–2978

Vanangamudi A, Hamzah S, Singh G. Synthesis of hybrid hydrophobic composite air filtration membranes for antibacterial activity and chemical detoxification with high particulate filtration efficiency (PFE). Chem Eng J, 2015, 260: 801–808

Casper CL, Stephens JS, Tassi NG, et al. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules, 2004, 37: 573–578

Lee KH, Kim HY, Bang HJ, et al. The change of bead morphology formed on electrospun polystyrene fibers. Polymer, 2003, 44: 4029–4034

Xu X, Wang H, Jiang L, et al. Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules, 2014, 47: 3409–3416

Wang B, Li B, Xiong J, et al. Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization. Macromolecules, 2008, 41: 9516–9521

Chen X, Wang W, Cheng S, et al. Mimicking bone nanostructure by combining block copolymer self-assembly and 1D crystal nucleation. ACS Nano, 2013, 7: 8251–8257

Liu J, Bauer AJP, Li B. Solvent vapor annealing: an efficient approach for inscribing secondary nanostructures onto electrospun fibers. Macromol Rapid Commun, 2014, 35: 1503–1508

Wang L, Pai CL, Boyce MC, et al. Wrinkled surface topographies of electrospun polymer fibers. Appl Phys Lett, 2009, 94: 151916

Bonino CA, Efimenko K, Jeong SI, et al. Three-dimensional electrospun alginate nanofiber mats via tailored charge repulsions. Small, 2012, 8: 1928–1936

Lin J, Cai Y, Wang X, et al. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf. Nanoscale, 2011, 3: 1258–1262

Huang XF, Yun H, Gong ZH, et al. Source apportionment and secondary organic aerosol estimation of PM2.5 in an urban atmosphere in China. Sci China Earth Sci, 2014, 57: 1352–1362

Lim CT, Tan EPS, Ng SY. Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Appl Phys Lett, 2008, 92: 141908

Yian Chew S, Hufnagel TC, Teck Lim C, et al. Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology, 2006, 17: 3880–3891

Wong SC, Baji A, Leng S. Effect of fiber diameter on tensile properties of electrospun poly(-caprolactone). Polymer, 2008, 49: 4713–4722

Pitt CG, Chasalow FI, Hibionada YM, et al. Aliphatic polyesters. I. The degradation of poly(ε-caprolactone) in vivo. J Appl Polym Sci, 1981, 26: 3779–3787

Zhang Y, Mu Y, Meng F, et al. The pollution levels of BTEX and carbonyls under haze and non-haze days in Beijing, China. Sci Total Environ, 2014, 490: 391–396

Huang RJ, Zhang Y, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514: 218–222

Hou C, Jiao T, Xing R, et al. Preparation of TiO2 nanoparticles modified electrospun nanocomposite membranes toward efficient dye degradation for wastewater treatment. J Taiwan Institute Chem Engineers, 2017, 78: 118–126

Bauer AJP, Grim ZB, Li B. Hierarchical polymer blend fibers of high structural regularity prepared by facile solvent vapor annealing treatment. Macromol Mater Eng, 2018, 303: 1700489

Sepe A, Zhang J, Perlich J, et al. Toward an equilibrium structure in lamellar diblock copolymer thin films using solvent vapor annealing–An in-situ time-resolved GISAXS study. Eur Polymer J, 2016, 81: 607–620

Sinturel C, Vayer M, Morris M, et al. Solvent vapor annealing of block polymer thin films. Macromolecules, 2013, 46: 5399–5415

Chen L, Zhao K, Chi S, et al. Improving fiber alignment by increasing the planar conformation of isoindigo-based conjugated polymers. Mater Chem Front, 2017, 1: 286–293

Bauer AJP, Liu J, Windsor LJ, et al. Current development of collagen- based biomaterials for tissue repair and regeneration. Soft Mater, 2014, 12: 359–370

Gan Z, Jiang B, Zhang J. Poly(ε-caprolactone)/poly(ethylene oxide) diblock copolymer. I. Isothermal crystallization and melting behavior. J Appl Polym Sci, 1996, 59: 961–967

Zhou C, Chu R, Wu R, et al. Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules, 2011, 12: 2617–2625

Hu C, Cui W. Hierarchical structure of electrospun composite fibers for long-term controlled drug release carriers. Adv Healthcare Mater, 2015, 1: 809–814

Lin J, Tian F, Shang Y, et al. Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption. Nanoscale, 2012, 4: 5316–5320

Lai C, Guo Q, Wu XF, et al. Growth of carbon nanostructures on carbonized electrospun nanofibers with palladium nanoparticles. Nanotechnology, 2008, 19: 195303

Lu P, Xia Y. Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity. Langmuir, 2013, 29: 7070–7078

Guo R, Jiao T, Li R, et al. Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal. ACS Sustain Chem Eng, 2018, 6: 1279–1288

Liu Y, Hou C, Jiao T, et al. Self-assembled AgNP-containing nanocomposites constructed by electrospinning as efficient dye photocatalyst materials for wastewater treatment. Nanomaterials, 2018, 8: 35

Zhou J, Liu Y, Jiao T, et al. Preparation and enhanced structural integrity of electrospun poly(ε-caprolactone)-based fibers by freezing amorphous chains through thiol-ene click reaction. Colloids Surfs A-Physicochem Eng Aspects, 2018, 538: 7–13

Song J, Xing R, Jiao T, et al. Crystalline dipeptide nanobelts based on solid–solid phase transformation self-assembly and their polarization imaging of cells. ACS Appl Mater Interfaces, 2018, 10: 2368–2376

Huo S, Duan P, Jiao T, et al. Self-assembled luminescent quantum dots to generate full-color and white circularly polarized light. Angew Chem Int Ed, 2017, 56: 12174–12178

Zhou J, Gao F, Jiao T, et al. Selective Cu(II) ion removal from wastewater via surface charged self-assembled polystyrene-Schiff base nanocomposites. Colloids Surfs A-Physicochem Eng Aspects, 2018, 545: 60–67

Luo X, Ma K, Jiao T, et al. Graphene oxide-polymer composite langmuir films constructed by interfacial thiol-ene photopolymerization. Nanoscale Res Lett, 2017, 12: 99

Sun S, Jiao T, Xing R, et al. Preparation of MoS2-based polydopamine- modified core-shell nanocomposites with elevated adsorption performances. RSC Adv, 2018, 8: 21644–21650

Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett, 2003, 3: 1167–1171

Guibo Y, Qing Z, Yahong Z, et al. The electrospun polyamide 6 nanofiber membranes used as high efficiency filter materials: Filtration potential, thermal treatment, and their continuous production. J Appl Polym Sci, 2013, 128: 1061–1069

Wu H, Kong D, Ruan Z, et al. A transparent electrode based on a metal nanotrough network. Nat Nanotech, 2013, 8: 421–425

Zhang S, Liu H, Zuo F, et al. A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter. Small, 2017, 13: 1603151

Vitchuli N, Shi Q, Nowak J, et al. Electrospun ultrathin nylon fibers for protective applications. J Appl Polym Sci, 2010, 116: 2181–2187

Wang N, Yang Y, Al-Deyab SS, et al. Ultra-light 3D nanofibre-nets binary structured nylon 6–polyacrylonitrile membranes for efficient filtration of fine particulate matter. J Mater Chem A, 2015, 3: 23946–23954

Wang N, Si Y, Wang N, et al. Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration. Separation Purification Tech, 2014, 126: 44–51