Hierarchical copper-1,3,5 benzenetricarboxylic acid-MOF-derived with nitrogen-doped graphene nanoribbons as a novel assembly nanocomposite for asymmetric supercapacitors

Rozhin Darabi1, Hassan Karimi-Maleh1
1School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Moradlou O, Ansarinejad H, Hosseinzadeh M, Kazemi H (2018) High-performance solid state asymmetric supercapacitor based on electrochemically decorated 3D network-like Co3O4 architecture on NiO nanoworms. J Alloys Compd 755:231–241. https://doi.org/10.1016/j.jallcom.2018.04.334

Ensafi AA, Moosavifard SE, Rezaei B, Kaverlavani SK (2018) Engineering onion-like nanoporous CuCo2O4 hollow spheres derived from bimetal-organic frameworks for high-performance asymmetric supercapacitors. J Mater Chem A 6:10497–10506. https://doi.org/10.1039/c8ta02819b

Du W, Bai YL, Xu J, Zhao H, Zhang L, Li X, Zhang J (2018) Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J Power Sources 402:281–295. https://doi.org/10.1016/j.jpowsour.2018.09.023

Yue L, Zhang S, Zhao H, Feng Y, Wang M, An L, Zhang X, Mi J (2019) One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode. Solid State Ionics 329:15–24. https://doi.org/10.1016/j.ssi.2018.11.006

Ping D, Yi F, Zhang G, Wu S, Fang S, Hu K, Xu BB, Ren J, Guo Z (2023) NH4Cl-assisted preparation of single Ni sites anchored carbon nanosheet catalysts for highly efficient carbon dioxide electroreduction. J Mater Sci Technol 142:1–9. https://doi.org/10.1016/j.jmst.2022.10.006.

He Z, Yang M, Wang Z, Chen H, Zhang X, Jiang Q, Murugadoss V, Huang M, Guo Z, Zhang H (2022) Optimization of segmented thermoelectric devices composed of high-temperature thermoelectric material La2Te3. Adv Compos Hybrid Mater 5:2884–2895. https://doi.org/10.1007/s42114-022-00471-w

Wang J, Fu R, Wen S, Ning P, Helal MH, Salem MA, Xu BB, El-Bahy ZM, Huang M, Guo Z, Huang L (2022) Progress and current challenges for CO2 capture materials from ambient air, Springer International Publishing. https://doi.org/10.1007/s42114-022-00567-3.

Zhu X, Yang M, Wang Z, He B, Chen H, Zhang X, Yang X, Wang B, Zhang H (2023) Remarkable thermoelectric performance of carbon-based schwarzites. Adv Compos Hybrid Mater 6:1–12. https://doi.org/10.1007/s42114-022-00595-z

Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11:5293–5308. https://doi.org/10.1021/acsnano.7b02796

Zheng P, Lv X, Shi S, Liu Y, Yang L, Ge D (2019) High-efficiency supercapacitors based on V2O5/rGONR network from hierarchical nanoribbon assemblies. J Alloys Compd 792:468–473. https://doi.org/10.1016/j.jallcom.2019.03.348

Ahuja P, Sahu V, Ujjain SK, Sharma RK, Singh G (2014) Performance evaluation of asymmetric supercapacitor based on cobalt manganite modified graphene nanoribbons. Electrochim Acta 146:429–436. https://doi.org/10.1016/j.electacta.2014.09.039

Gopi CV, Vinodh R, Sambasivam S, Obaidat IM, Kim HJ (2020) Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: from design and development to applications. J Energy Storage 27. https://doi.org/10.1016/j.est.2019.101035.

Wang Z, Yang M, Xie X, Yu C, Jiang Q, Huang M, Algadi H, Guo Z, Zhang H (2022) Applications of machine learning in perovskite materials. Adv Compos Hybrid Mater 5:2700–2720. https://doi.org/10.1007/s42114-022-00560-w

Sun C, Zou Y, Qin C, Zhang B, Wu X (2022) Temperature effect of photovoltaic cells: a review. Adv Compos Hybrid Mater 5:2675–2699. https://doi.org/10.1007/s42114-022-00533-z

Yang D (2012) Application of nanocomposites for supercapacitors: characteristics and properties. Nanocomposites - New Trends Dev. https://doi.org/10.5772/50409

Sun M, Wang J, Xu M, Fang Z, Jiang L, Han Q, Liu J, Yan M, Wang Q, Bi H (2019) Hybrid supercapacitors based on interwoven CoO-NiO-ZnO nanowires and porous graphene hydrogel electrodes with safe aqueous electrolyte for high supercapacitance. Adv Electron Mater 5:1–11. https://doi.org/10.1002/aelm.201900397

Ouyang Y, Zhang B, Wang C, Xia X, Lei W, Hao Q (2021) Bimetallic metal-organic framework derived porous NiCo2S4 nanosheets arrays as binder-free electrode for hybrid supercapacitor. Appl Surf Sci 542:148621. https://doi.org/10.1016/j.apsusc.2020.148621.

Xu B, Zhang H, Mei H, Sun D (2020) Recent progress in metal-organic framework-based supercapacitor electrode materials. Coord Chem Rev 420:213438. https://doi.org/10.1016/j.ccr.2020.213438.

Wang DG, Liang Z, Gao S, Qu C, Zou R (2020) Metal-organic framework-based materials for hybrid supercapacitor application. Coord Chem Rev 404:213093. https://doi.org/10.1016/j.ccr.2019.213093.

Wang K, Bi R, Huang M, Lv B, Wang H, Li C, Wu H, Zhang Q (2020) Porous cobalt metal-organic frameworks as active elements in battery-supercapacitor hybrid devices. Inorg Chem 59:6808–6814. https://doi.org/10.1021/acs.inorgchem.0c00060

Beitollahi H, Van Le Q, Farha OK, Shokouhimehr M, Tajik S, Nejad FG, Kirlikovali KO, Jang HW, Varma RS (2020) Recent electrochemical applications of metal-organic framework- based materials. Cryst Growth Des 20:7034–7064. https://doi.org/10.1021/acs.cgd.0c00601

Yang Z, Chabi S, Xia Y, Zhu Y (2015) Preparation of 3D graphene-based architectures and their applications in supercapacitors. Prog Nat Sci Mater Int 25:554–562. https://doi.org/10.1016/j.pnsc.2015.11.010

Rani B, Sahu NK (2020) Electrochemical properties of CoFe2O4 nanoparticles and its rGO composite for supercapacitor. Diam Relat Mater 108:107978. https://doi.org/10.1016/j.diamond.2020.107978.

Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107. https://doi.org/10.1021/jp902214f

Hu D, Xiao C, Wang X, Xiong X, Sun J, Zhuo Q, Wang J, Qin C, Dai L (2019) Poly(vinyl alcohol) fibers with excellent mechanical properties produced by reinforcement of single-walled graphene oxide nanoribbons with complete morphology obtained by freeze-drying. Fibers Polym 20:2637–2645. https://doi.org/10.1007/s12221-019-9253-9

Martín A, Hernández-Ferrer J, Martínez MT, Escarpa A (2015) Graphene nanoribbon-based electrochemical sensors on screen-printed platforms. Electrochim Acta 172:2–6. https://doi.org/10.1016/j.electacta.2014.11.090

Sinitskii A, Dimiev A, Kosynkin DV, Tour JM (2010) Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes. ACS Nano 4:5405–5413. https://doi.org/10.1021/nn101019h

Senese AD, Chalifoux WA (2019) Nanographene and graphene nanoribbon synthesis via alkyne benzannulations. Molecules 24. https://doi.org/10.3390/molecules24010118.

Sahu V, Goel S, Tomar AK, Singh G, Sharma RK (2017) Graphene nanoribbons @ vanadium oxide nanostrips for supercapacitive energy storage. Electrochim Acta 230:255–264. https://doi.org/10.1016/j.electacta.2017.01.188.

Sinitskii A, Tour JM (2012) Patterning graphene nanoribbons using copper oxide nanowires. Appl Phys Lett 100:2012–2015. https://doi.org/10.1063/1.3692744

Khajehpour M, Sadeghi S, Yazdi AZ, Sundararaj U (2014) Tuning the curing behavior of fluoroelastomer (FKM) by incorporation of nitrogen doped graphene nanoribbons (CNx-GNRs). Polymer (Guildf) 55:6293–6302. https://doi.org/10.1016/j.polymer.2014.10.008.

Zou F, Hu X, Sun Y, Luo W, Xia F, Qie L, Jiang Y, Huang Y (2013) Microwave-induced in situ synthesis of Zn2GeO 4/N-doped graphene nanocomposites and their lithium-storage properties. Chem - A Eur J 19:6027–6033. https://doi.org/10.1002/chem.201204588

Lai C, Guo Y, Zhao H, Song H, Qu X, Huang M, Hong SW, Lee K (2022) High-performance double “ion-buffering reservoirs” of asymmetric supercapacitors enabled by battery-type hierarchical porous sandwich-like Co3O4 and 3D graphene aerogels. Adv Compos Hybrid Mater 5:2557–2574. https://doi.org/10.1007/s42114-022-00532-0

Yang W, Peng D, Kimura H, Zhang X, Sun X, Pashameah RA, Alzahrani E, Wang B, Guo Z, Du W, Hou C (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5:3146–3157. https://doi.org/10.1007/s42114-022-00556-6

Zhao Y, Liu F, Zhao Z, Bai P, Ma Y, Alhadhrami A, Mersal GAM, Lin Z, Ibrahim MM, El-Bahy ZM (2022) Direct ink printing reduced graphene oxide/KCu7S4 electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 5:1516–1526. https://doi.org/10.1007/s42114-022-00488-1

Zhao Y, Liu F, Zhu K, Maganti S, Zhao Z, Bai P (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater 5:1537–1547. https://doi.org/10.1007/s42114-022-00430-5

Shang S, Gan L, Yuen CWM, Jiang SX, Luo NM (2015) The synthesis of graphene nanoribbon and its reinforcing effect on poly (vinyl alcohol). Compos Part A Appl Sci Manuf 68:149–154. https://doi.org/10.1016/j.compositesa.2014.10.011

Li J, Xia J, Zhang F, Wang Z, Liu Q (2018) An electrochemical sensor based on copper-based metal-organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water. Talanta 181:80–86. https://doi.org/10.1016/j.talanta.2018.01.002

Jaison MJ, Narayanan TN, Kumar TP, Pillai VK (2015) A single-step room-temperature electrochemical synthesis of nitrogen-doped graphene nanoribbons from carbon nanotubes. J Mater Chem A 3:18222–18228. https://doi.org/10.1039/c5ta03869c.

Asadian E, Shahrokhian S, Zad AI, Jokar E (2014) In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: application to sensitive electrochemical detection of dobutamine. Sensors Actuators, B Chem 196:582–588. https://doi.org/10.1016/j.snb.2014.02.049

Jabbari V, Veleta JM, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagrán D (2016) Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chem Eng J 304:774–783. https://doi.org/10.1016/j.cej.2016.06.034

Ebrahim AM, Jagiello J, Bandosz TJ (2015) Enhanced reactive adsorption of H2S on Cu-BTC/S- and N-doped GO composites. J Mater Chem A 3:8194–8204. https://doi.org/10.1039/c5ta01359c

Noor T, Ammad M, Zaman N, Iqbal N, Yaqoob L, Nasir H (2019) A highly efficient and stable copper BTC metal organic framework derived electrocatalyst for oxidation of methanol in DMFC application. Catal Letters 149:3312–3327. https://doi.org/10.1007/s10562-019-02904-6

Karimi-Harandi MH, Shabani-Nooshabadi M, Darabi R (2021) Cu-BTC metal-organic frameworks as catalytic modifier for ultrasensitive electrochemical determination of methocarbamol in the presence of methadone. J Electrochem Soc 168:097507. https://doi.org/10.1149/1945-7111/ac2468.

Nivetha R, Sajeev A, Paul AM, Gothandapani K, Gnanasekar S, Bhardwaj P, Jacob G, Sellappan R, Raghavan V, Pitchaimuthu S, Jeong SK (2020) Cu based metal organic framework (Cu-MOF) for electrocatalytic hydrogen evolution reaction. Mater Res Express 7. https://doi.org/10.1088/2053-1591/abb056.

Venu B, Shirisha V, Vishali B, Naresh G, Kishore R, Sreedhar I, Venugopal A (2020) A Cu-BTC metal-organic framework (MOF) as an efficient heterogeneous catalyst for the aerobic oxidative synthesis of imines from primary amines under solvent free conditions. New J Chem 44:5972–5979. https://doi.org/10.1039/c9nj05997k

Liu M, Song Y, He S, Tjiu WW, Pan J, Xia YY, Liu T (2014) Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction. ACS Appl Mater Interfaces 6:4214–4222. https://doi.org/10.1021/am405900r

Saraf M, Rajak R, Mobin SM (2016) A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J Mater Chem A 4:16432–16445. https://doi.org/10.1039/c6ta06470a

Liu M, Song Y, He S, Tjiu WW, Pan J, Xia YY, Liu T (2014) Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction

Kshetri T, Singh TI, Lee YS, Khumujam DD, Kim NH, Lee JH (2021) Metal organic framework-derived cobalt telluride-carbon porous structured composites for high-performance supercapacitor. 211.

Li Y, Miao J, Sun X, Xiao J, Li Y, Wang H, Xia Q, Li Z (2016) Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity. Chem Eng J 298:191–197. https://doi.org/10.1016/j.cej.2016.03.141

Zhai B, Song LL, Wang WJ, Li ZY, Li SZ, Zhang FL, Zhang C, Zang YB (2018) Structures and magnetic properties of 3D manganese(II)- and 2D pillar-layered copper(II)-organic framework derived from mixed carboxylate ligands. J Solid State Chem 264:29–34. https://doi.org/10.1016/j.jssc.2018.04.034