Hierarchical classification of normal, fatty and heterogeneous liver diseases from ultrasound images using serial and parallel feature fusion

Biocybernetics and Biomedical Engineering - Tập 36 - Trang 697-707 - 2016
Alaleh Alivar1, Habibollah Danyali1, Mohammad Sadegh Helfroush1
1Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran

Tài liệu tham khảo

Suganya, 2012, Classification of liver diseases from ultrasound images using a hybrid kohonen SOM and LPND speckle reduction method Içer, 2012, Quantitative grading using grey relational analysis on ultrasonographic images of a fatty liver, J Med Syst, 36, 2521, 10.1007/s10916-011-9724-z Kadah, 1996, Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images, IEEE Trans Med Imaging, 15, 466, 10.1109/42.511750 Virmani, 2013, SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors, J Digit Imaging, 26, 530, 10.1007/s10278-012-9537-8 Owjimehr, 2015, An improved method for liver diseases detection by ultrasound image analysis, J Med Signals Sens, 5, 21, 10.4103/2228-7477.150387 Owjimehr, 2014, Fully automatic segmentation and classification of liver diseases from ultrasound images using completed LBP textute features, 22nd Iran. Conf. Electr. Eng. Tehran, 1956 Andrade, 2012, Classifier approaches for liver steatosis using ultrasound images, Procedia Technol, 5, 763, 10.1016/j.protcy.2012.09.084 Huang, 2010, Texture analysis of ultrasonic liver images based on spatial domain methods, 562 Ribeiro, 2012, Global and local detection of liver steatosis from ultrasound, Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS, 6547 Minhas, 2012, Automated classification of liver disorders using ultrasound images, J Med Syst, 36, 3163, 10.1007/s10916-011-9803-1 Singh, 2013, An information fusion based method for liver classification using texture analysis of ultrasound images, Inf Fusion Wu, 2013, Evolution-based hierarchical feature fusion for ultrasonic liver tissue characterization, IEEE J Biomed Heal Inf, 17, 967, 10.1109/JBHI.2013.2261819 Alivar, 2014, Classification of liver diseases using ultrasound images based on feature combination, 2014 4th Int Conf Comput Knowl Eng, 669, 10.1109/ICCKE.2014.6993434 Dasarathy, 1994 Yang, 2003, Feature fusion: parallel strategy vs. serial strategy, Pattern Recognit, 36, 1369, 10.1016/S0031-3203(02)00262-5 Mangai, 2010, A survey of decision fusion and feature fusion strategies for pattern classification, IETE Tech Rev, 27, 293, 10.4103/0256-4602.64604 Wu, 2012, Ultrasonic liver tissue characterization by feature fusion, Expert Syst Appl, 39, 9389, 10.1016/j.eswa.2012.02.128 Kuncheva, 2001, Decision templates for multiple classifier fusion: an experimental comparison, Pattern Recognit, 34, 299, 10.1016/S0031-3203(99)00223-X Triguero, 2016, Labelling strategies for hierarchical multi-label classification techniques, Pattern Recognit, 56, 170, 10.1016/j.patcog.2016.02.017 Zhang, 2016, Hierarchical feature learning with dropout k-means for hyperspectral image classification, Neurocomputing, 187, 75, 10.1016/j.neucom.2015.07.132 Liu, 2016, A hierarchical ensemble of ECOC for cancer classification based on multi-class microarray data, Inf Sci, 349–350, 102, 10.1016/j.ins.2016.02.028 Haralick, 1973, Textural features for image classification, IEEE Trans Syst Man Cybern, 3 Ojala, 1996, A comparative study of texture measures with classification based on featured distributions, Pattern Recognit, 29, 51, 10.1016/0031-3203(95)00067-4 Zhang, 2010, A completed modeling of local binary pattern operator for texture classification, IEEE Trans Image Process, 19, 1657, 10.1109/TIP.2010.2044957 Guyon, 2003, An introduction to variable and feature selection, J Mach Learn Res, 3, 1157 DASH, 1997, Feature selection for classification, Intell Data Anal, 1, 131, 10.1016/S1088-467X(97)00008-5 Eberhart, 1995, A new optimizer using particle swarm theory, MHS’95 Proc Sixth Int Symp Micro Mach Hum Sci, 39, 10.1109/MHS.1995.494215 Chang, 2001