Hierarchical Porous Polyamide 6 by Solution Foaming: Synthesis, Characterization and Properties
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wypych, G. (2012). Polyamide 6. Handbook of Polymers, Elsevier.
Schamel, 2012, Synthesis of macroporous polystyrene by the polymerization of foamed emulsions, Angew. Chem. Int. Ed., 51, 2213, 10.1002/anie.201107806
Mills, N.J. (2007). Polymer Foams Handbook, Elsevier.
Colton, 2010, Nucleation of microcellular foam: Theory and practice, Polym. Eng. Sci., 27, 500, 10.1002/pen.760270704
Liu, 2015, Nanocellular polymer foams as promising high performance thermal insulation materials, Eur. Polym. J., 65, 33, 10.1016/j.eurpolymj.2015.01.039
Moglia, 2014, Injectable polymerized high internal phase emulsions with rapid in situ curing, Biomacromolecules, 15, 2870, 10.1021/bm500754r
Lumelsky, 2008, Porous polycaprolactone-polystyrene semi-interpenetrating polymer networks synthesized within high internal phase emulsions, Macromolecules, 41, 1469, 10.1021/ma7027177
Tai, 2001, Organic-inorganic networks in foams from high internal phase emulsion polymerizations, Polymer, 42, 4473, 10.1016/S0032-3861(00)00820-X
Rahman, 2018, High crystalline, porous polyamide 6 by anionic polymerization, Polymer, 138, 8, 10.1016/j.polymer.2018.01.040
Wang, 2014, Foam-like xanthan gum/clay aerogel composites and tailoring properties by blending with agar, Ind. Eng. Chem. Res., 53, 7680, 10.1021/ie500490n
Wang, 2013, Polymer/clay aerogel composites with flame retardant agents: Mechanical, thermal and fire behavior, Mater. Des., 52, 609, 10.1016/j.matdes.2013.05.096
Rudaz, 2014, Aeropectin: Fully biomass-based mechanically strong and thermal superinsulating aerogel, Biomacromolecules, 15, 2188, 10.1021/bm500345u
Grishechko, 2013, New tannin-lignin aerogels, Ind. Crop. Prod., 41, 347, 10.1016/j.indcrop.2012.04.052
Kwon, 2015, A novel synthesis method for an open-cell microsponge polyimide for heat insulation, Polymer, 56, 68, 10.1016/j.polymer.2014.06.090
Verdolotti, 2015, Polyurethane-silica hybrid foam by sol-gel approach: Chemical and functional properties, Polymer, 56, 20, 10.1016/j.polymer.2014.10.017
Rafique, 2014, Crystallization, crystal structure, and isothermal melt crystallization kinetics of novel polyamide 6/SiO2 nanocomposites prepared using the sol-gel technique, J. Phys. Chem. B, 118, 9486, 10.1021/jp505046v
Seo, 2010, Properties of water-blown rigid polyurethane foams with reactivity of raw materials, J. Appl. Polym. Sci., 93, 2334, 10.1002/app.20717
Realinho, 2014, Thermal stability and fire behaviour of flame retardant high density rigid foams based on hydromagnesite-filled polypropylene composites, Compos. Part B, 58, 553, 10.1016/j.compositesb.2013.11.015
Zhang, 2012, Porous inorganic-organic shape memory polymers, Polymer, 53, 2935, 10.1016/j.polymer.2012.04.053
Yu, 2006, Foam processing and cellular structure of polylactide-based nanocomposites, Polymer, 47, 5350, 10.1016/j.polymer.2006.05.050
Bian, 2003, Heterogeneous nucleation on the crystallization poly(ethylene terephthalate), J. Polym. Sci. Part B Polym. Phys., 41, 2135, 10.1002/polb.10538
Abbasi, H., Antunes, M., and Velasco, J.I. (2018). Effects of carbon nanotubes/graphene nanoplatelets hybrid systems on the structure and properties of polyetherimide-based foams. Polymers, 10.
Huang, 2017, Mechanical properties and crystallization behavior of three kinds of straws/nylon 6 composites, Int. J. Boil. Macromol., 103, 663, 10.1016/j.ijbiomac.2017.05.121
Delkash, 2017, Crystallization, structural and mechanical properties of PA6/PC/NBR ternary blends: Effect of NBR-g-GMA compatibilizer and organoclay, Sci. Eng. Compos. Mater., 24, 669, 10.1515/secm-2015-0185
Diao, 2008, Impact of diffusion on concentration profiles around near-critical nuclei and implications for theories of nucleation and growth, Acta Mater., 56, 2585, 10.1016/j.actamat.2008.01.044
Shan, 2010, Multiple melting behaviour of annealed crystalline polymers, Polym. Test., 29, 273, 10.1016/j.polymertesting.2009.11.011
Antonio, 2011, Production, cellular structure and thermal conductivity of microcellular (methyl methacrylate)-(butyl acrylate)-(methyl methacrylate) triblock copolymers, Polym. Int., 60, 146, 10.1002/pi.2931
Notario, 2015, Experimental validation of the knudsen effect in nanocellular polymeric foams, Polymer, 56, 57, 10.1016/j.polymer.2014.10.006
Reglero, 2008, An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method, Int. J. Heat Mass Transf., 51, 6259, 10.1016/j.ijheatmasstransfer.2007.11.062
Luo, 2012, Using nanocapsules as building blocks to fabricate organic polymer nanofoam with ultra low thermal conductivity and high mechanical strength, Polymer, 53, 5699, 10.1016/j.polymer.2012.10.012
Qiu, 2015, Thermal transport in high-strength polymethacrylimide (pmi) foam insulations, Int. J. Thermophys., 36, 2523, 10.1007/s10765-014-1651-z
Saruhan, 2011, Correlation of thermal conductivity changes with anisotropic nano-pores of eb-pvd deposited fysz-coatings, Surf. Coat. Technol., 205, 5369, 10.1016/j.surfcoat.2011.05.051
Sun, 2016, The variation in elastic modulus throughout the compression of foam materials, Acta Mater., 110, 161, 10.1016/j.actamat.2016.03.003
Sotomayor, 2014, Role of cell regularity and relative density on elasto-plastic compression response of random honeycombs generated using voronoi diagrams, Int. J. Solids Struct., 51, 3776, 10.1016/j.ijsolstr.2014.07.009
Root, 2013, Shock compression of hydrocarbon foam to 200 gpa: Experiments, atomistic simulations, and mesoscale hydrodynamic modeling, J. Appl. Phys., 114, 103502, 10.1063/1.4821109