Hierarchical Porous O‐Doped g‐C<sub>3</sub>N<sub>4</sub> with Enhanced Photocatalytic CO<sub>2</sub> Reduction Activity

Small - Tập 13 Số 15 - 2017
Junwei Fu1, Bicheng Zhu1, Chuanjia Jiang1, Bei Cheng1, Wei You1
1State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.

Tóm tắt

Artificial photosynthesis of hydrocarbon fuels by utilizing solar energy and CO2 is considered as a potential route for solving ever‐increasing energy crisis and greenhouse effect. Herein, hierarchical porous O‐doped graphitic carbon nitride (g‐C3N4) nanotubes (OCN‐Tube) are prepared via successive thermal oxidation exfoliation and curling‐condensation of bulk g‐C3N4. The as‐prepared OCN‐Tube exhibits hierarchically porous structures, which consist of interconnected multiwalled nanotubes with uniform diameters of 20–30 nm. The hierarchical OCN‐Tube shows excellent photocatalytic CO2 reduction performance under visible light, with methanol evolution rate of 0.88 µmol g−1 h−1, which is five times higher than bulk g‐C3N4 (0.17 µmol g−1 h−1). The enhanced photocatalytic activity of OCN‐Tube is ascribed to the hierarchical nanotube structure and O‐doping effect. The hierarchical nanotube structure endows OCN‐Tube with higher specific surface area, greater light utilization efficiency, and improved molecular diffusion kinetics, due to the more exposed active edges and multiple light reflection/scattering channels. The O‐doping optimizes the band structure of g‐C3N4, resulting in narrower bandgap, greater CO2 affinity, and uptake capacity as well as higher separation efficiency of photogenerated charge carriers. This work provides a novel strategy to design hierarchical g‐C3N4 nanostructures, which can be used as promising photocatalyst for solar energy conversion.

Từ khóa


Tài liệu tham khảo

10.1002/anie.201411096

10.1038/277637a0

10.1007/s40843-014-0003-1

10.1016/j.apsusc.2016.09.093

10.1021/acs.jpclett.5b01610

10.1016/j.apsusc.2015.08.173

10.1016/j.apsusc.2015.03.050

10.1002/anie.201207199

10.1039/C4MH00176A

10.1002/adma.201400087

10.1039/c3ta14493c

10.1002/smll.201500926

10.1021/ja5044787

10.1002/smll.201500084

10.1038/nmat2317

10.1002/adma.201500033

10.1021/acs.chemrev.6b00075

10.1002/anie.201501788

10.1039/C5TA05503B

10.1039/c4cp00133h

10.1016/j.apcatb.2013.10.029

10.1016/j.apcatb.2014.03.037

10.1002/smll.201402636

10.1002/smll.201400506

10.1002/adfm.201503221

10.1002/adma.201501939

10.1016/j.apcatb.2016.03.062

10.1016/j.nanoen.2015.01.043

10.1039/c2cc35862j

10.1002/adma.201204453

10.1002/anie.201407319

10.1002/adma.201400573

10.1002/adfm.201203287

10.1002/adma.200702230

10.1039/C5TA05128B

10.1016/j.nanoen.2015.03.014

10.1039/C4CC02553A

10.1039/C6NR00546B

10.1002/adfm.201200922

10.1021/ja411321s

10.1016/j.apcatb.2016.03.002

10.1039/C5CC01035G

10.1039/C5CS00838G

10.1016/j.jcis.2016.05.026

10.1039/c2cc35862j

10.1016/j.apcatb.2015.03.045

10.1038/ncomms9106

10.1021/jacs.5b10525

10.1002/adma.201502057

10.1002/smll.201203135

Moulder J. F., 1992, Handbook of X‐Ray Photoelectron Spectroscopy

10.1201/9781420029253

10.1351/pac198254112201

10.1021/jp4095563

10.1016/j.apsusc.2015.07.082

10.1039/c4dt00181h

10.1016/j.matchemphys.2015.05.036

10.1016/j.catcom.2009.10.010

10.1039/C5TA04815J

10.1007/s10563-009-9065-9