Hierarchical NiS@CoS with Controllable Core‐Shell Structure by Two‐Step Strategy for Supercapacitor Electrodes

Advanced Materials Interfaces - Tập 7 Số 3 - 2020
Yidong Miao1,2,3, Xuping Zhang1,2,3, Zhan Jiang1,2,3, Yanwei Sui1,2,3, Jiqiu Qi1, Fuxiang Wei1, Qingkun Meng1, Yezeng He1, Yaojian Ren1, Zhenzhen Zhan1, Zhi Sun1
1School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, P. R. China
2The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, Xuzhou, 221116 P. R. China
3The Xuzhou City Key Laboratory of High Efficient Energy Storage Technology and Equipment, Xuzhou, 221116 P. R. China

Tóm tắt

AbstractConstructing hierarchical core‐shell configuration from well‐known metal sulfides is one way to further tune and utilize unique species. Herein, a novel core‐shell structure is developed based on CoS deposited on NiS nanosheets, which involves hydrothermal and electrodeposition method. The micromorphology of the composite electrode can be optimized by adjusting the cycles of electrodeposition. Taking advantages of the highly conductive, open framework of the core‐shell nanolayer, the 5‐NiS@CoS electrode shows a specific capacitance of 1210 F g−1 at a current density of 1 A g−1 (retaining 82% from 1 to 10 A g−1, while NiS substrate is only 39%). The specific capacitance retention rate is 80.94% at 10 A g−1 after 2000 cycles (NiS substrate is 59.6%). Moreover, NiS@CoS//AC asymmetric supercapacitor device delivers an energy density of 24.1 Wh kg−1 at a power density of 752.15 W kg−1 and remarkable stability (over 80% retention after 5000 cycles). This work may prompt the exploration of the synthesis of inexpensive compounds incorporating highly reactive components for supercapacitors.

Từ khóa


Tài liệu tham khảo

10.1038/ncomms12647

10.1039/C2NR32040A

10.1126/science.1249625

10.1039/C5CS00580A

10.1016/j.jcis.2018.09.026

10.1016/j.jpowsour.2019.04.062

10.1002/admi.201700985

10.1016/j.apsusc.2018.04.254

10.1016/j.cej.2017.09.004

10.1016/j.electacta.2018.09.028

10.1002/aenm.201701592

10.1002/admi.201800018

10.1016/j.jallcom.2018.01.324

10.1016/j.jpowsour.2017.01.078

10.1016/j.electacta.2017.01.111

10.1039/C5CP01945A

10.1016/j.electacta.2015.06.011

10.1016/j.electacta.2018.06.161

10.1021/acsenergylett.7b00405

10.1016/j.nanoen.2018.10.060

10.1021/acsnano.8b00621

10.1002/smll.201803639

10.1016/j.matlet.2018.07.118

10.1016/j.jechem.2017.05.005

10.1016/j.jechem.2017.11.014

10.1002/admi.201701056

10.1007/s10853-019-03746-8

10.1016/j.cej.2016.10.016

10.1021/nn503814y

10.2138/am-2000-0416

10.1039/C5TA04464B

10.1007/s10854-017-7919-x

10.1016/j.apcatb.2018.11.035

10.1039/C7QI00760D

10.1007/s10854-017-7359-7

10.1016/j.jpowsour.2014.10.156

10.1016/j.jcis.2019.07.063

10.1016/j.jelechem.2017.04.014

10.1016/j.est.2019.03.017

10.1039/C5TA05934H

Zhang A. T., 2020, Chem. Eng. J., 380, 10

10.1016/j.matlet.2016.10.021

10.1021/acsami.9b16458

10.1039/C9TA01303B