Hierarchical Models for the Analysis of Likert Scales in Regression and Item Response Analysis

International Statistical Review - Tập 89 Số 1 - Trang 18-35 - 2021
Gerhard Tutz1
1Department of Statistics Ludwig‐Maximilians‐Universität München Akademiestraße 1 München 80799 Germany

Tóm tắt

SummaryAppropriate modelling of Likert‐type items should account for the scale level and the specific role of the neutral middle category, which is present in most Likert‐type items that are in common use. Powerful hierarchical models that account for both aspects are proposed. To avoid biased estimates, the models separate the neutral category when modelling the effects of explanatory variables on the outcome. The main model that is propagated uses binary response models as building blocks in a hierarchical way. It has the advantage that it can be easily extended to include response style effects and non‐linear smooth effects of explanatory variables. By simple transformation of the data, available software for binary response variables can be used to fit the model. The proposed hierarchical model can be used to investigate the effects of covariates on single Likert‐type items and also for the analysis of a combination of items. For both cases, estimation tools are provided. The usefulness of the approach is illustrated by applying the methodology to a large data set.

Từ khóa


Tài liệu tham khảo

10.1002/9780470594001

10.1007/s11336-010-9154-8

10.1037/a0028111

10.1037/met0000106

10.1111/bmsp.12086

10.1037/1040-3590.10.4.331

10.3758/BF03210812

10.1509/jmkr.38.2.143.18840

10.1177/0013164410388411

Carifio J., 2007, Ten common misunderstandings, misconceptions, persistent myths and urban legends about Likert scales and Likert response formats and their antidotes, J. Soc. Sci., 3, 106

10.5032/jae.1994.04031

De Boeck P., 2012, Irtrees: Tree‐based item response models of the GLMM family, J. Stat. Softw., 48, 1

10.1007/s11135-007-9089-z

Gadermann A.M., 2012, Estimating ordinal reliability for Likert‐type and ordinal item response data: a conceptual, empirical, and practical guide, Pract. Assess. Res. Eval., 17, 3

Hastie T., 1990, Generalized Additive Models

10.1111/j.1365-2929.2004.02012.x

10.3758/s13428-015-0631-y

10.1007/BF02295612

Kaptein M.C. Nass C.&Markopoulos P.(2010).Powerful and consistent analysis of likert‐type ratingscales. InProceedings of the SIGCHI Conference on Human Factors in Computing Systems pp.2391–2394 ACM.

10.1080/00273171.2013.866536

10.1007/s10869-008-9064-2

Lantz B., 2013, Equidistance of Likert‐type scales and validation of inferential methods using experiments and simulations, Elec. J. Bus. Res. Methods, 11, 16

Likert R., 1932, A technique for the measurement of attitudes, Arch. psychol., 140, 44

10.1177/0022022192234006

10.1016/S0167-9473(98)00033-4

10.1007/BF02296272

10.1007/BF02302590

McCulloch C., 2001, Generalized, Linear, and Mixed Models

10.1016/j.paid.2008.01.010

10.1111/bmsp.12158

Messick S., 1991, Improving Inquiry in Social Science: A Volume in Honor of Lee J. Cronbach

10.1177/1471082X16644874

Rattinger H. Roßteutscher S. Schmitt‐Beck R. Weßels B.&Wolf C.(2014).Pre‐election cross section (GLES 2013). GESIS Data Archive Cologne ZA5700 Data file Version 2.0.0.

10.1037/0033-295X.95.3.318

10.1007/BF02294328

Samejima F., 2016, Handbook of Item Response Theory

10.1016/j.jmp.2009.06.007

Tijmstra J., 2018, Generalized mixture IRT models with different item‐response structures: A case study using likert‐scale data, Behav. Res. Methods, 55, 1

10.1002/bimj.4710310302

Tutz G., 2012, Regression for Categorical Data

10.3102/1076998616636850

10.1177/0146621617748322

10.1093/ijpor/eds021

10.1201/9781315374512

10.1201/9781315370279

10.22237/jmasm/1177992180