Hierarchical Bayesian modelling with habitat and time covariates for estimating riverine fish population size by successive removal method

Canadian Journal of Fisheries and Aquatic Sciences - Tập 65 Số 1 - Trang 117-133 - 2008
Étienne Rivot1, Étienne Prévost2, Anne Cuzol3, Jean-Luc J.-L. Baglinière1, Éric Parent4
1Écologie et santé des écosystèmes
2Ecologie Comportementale et Biologie des Populations de Poissons
3Laboratoire de Statistiques Appliquées de Bretagne Sud
4Mathématiques et Informatique Appliquées

Tóm tắt

We present a hierarchical Bayesian modelling (HBM) framework for estimating riverine fish population size from successive removal data via electrofishing. It is applied to the estimation of the population of Atlantic salmon (Salmo salar) juveniles in the Oir River (France). The data set consists of 10 sampling sites sampled by one or two removals over a period of 20 years (1986–2005). We develop and contrast four models to assess the effect of temporal variations and habitat type on the density of fish and the probability of capture. The Bayes factor and the deviance information criterion are used to compare these models. The most credible and parsimonious model is the one that accounts for the effects of the years and the habitat type on the density of fish. It is used to extrapolate the population size in the entire river reach. This paper illustrates that HBM successfully accommodates large but sparse data sets containing poorly informative data for some units. Its conditional structure enables it to borrow strength from data-rich to data-poor units, thus improving the estimations. Predictions of the population size of the entire river reach can be derived, while accounting for all sources of uncertainty.

Từ khóa


Tài liệu tham khảo

Armstrong J.D., 2003, Fish. Res., 62, 143, 10.1016/S0165-7836(02)00160-1

Baglinière J.L., 1986, J. Fish Biol., 29, 467, 10.1111/j.1095-8649.1986.tb04962.x

Baglinière J.L., 1993, Gibson and R.E. Cutting. Can. Spec. Publ. Fish. Aquat. Sci., 189

Baglinière J.L., 2005, ICES J. Mar. Sci., 62, 695, 10.1016/j.icesjms.2005.02.008

Bardonnet A., 2000, Can. J. Fish. Aquat. Sci., 57, 497, 10.1139/f99-226

Bernardo J.M., 1979, J. R. Stat. Soc. Ser. B Stat. Methodol., 41, 113

Bohlin T., 1989, Hydrobiologia, 173, 9, 10.1007/BF00008596

Brooks S.P., 2003, Philos. Trans. R. Soc. Lond. A, 361, 2681, 10.1098/rsta.2003.1263

Buckland S.T, 2004, Ecol. Model., 171, 157, 10.1016/j.ecolmodel.2003.08.002

Carle F.L., 1978, Biometrics, 34, 621, 10.2307/2530381

Celeux G., 2006, Bayesian Analysis, 1, 651, 10.1214/06-BA122

Clark J.S., 2005, Bayesians. Ecol. Lett., 8, 2, 10.1111/j.1461-0248.2004.00702.x

Clark J.S., 2004, Ecology, 85, 3140, 10.1890/03-0520

Dolan C.R., 2003, Trans. Am. Fish. Soc., 132, 969, 10.1577/T02-055

Dumas J., 2003, ICES J. Mar. Sci., 60, 356, 10.1016/S1054-3139(03)00003-1

Fernandez C., 2002, Appl. Stat. J. R. Stat. C, 51, 257, 10.1111/1467-9876.00268

Gelman A., 2006, Bayesian Analysis, 1, 515, 10.1214/06-BA117A

Halley J., 2002, Oikos, 99, 518, 10.1034/j.1600-0706.2002.11962.x

Han C., 2001, J. Am. Stat. Assoc., 96, 1122, 10.1198/016214501753208780

Hankin D.G., 1984, Can. J. Fish. Aquat. Sci., 41, 1575, 10.1139/f84-196

Harley S.J., 2001, Can. J. Fish. Aquat. Sci., 58, 1569, 10.1139/f01-097

Harwood J., 2003, TREE, 18, 617

Hirst D., 1994, Biometrics, 50, 501, 10.2307/2533392

Hoeting J.A., 1999, Stat. Sci., 4, 382

Kass R.E., 1995, J. Am. Stat. Assoc., 90, 773, 10.1080/01621459.1995.10476572

King R., 2001, Biometrika, 88, 317, 10.1093/biomet/88.2.317

Link W.A., 2002, J. Wildl. Manag., 66, 277, 10.2307/3803160

Mäntyniemi S., 2005, Can. J. Fish. Aquat. Sci., 62, 291, 10.1139/f04-195

Michielsen C.G.J., 2004, Can. J. Fish. Aquat. Sci., 61, 1032, 10.1139/f04-048

Milner N.J., 2003, Fish. Res., 62, 111, 10.1016/S0165-7836(02)00157-1

Mitro M.G., 2000, Can. J. Fish. Aquat. Sci., 57, 951, 10.1139/f00-025

Peterson J.T., 2004, Trans. Am. Fish. Soc., 133, 462, 10.1577/03-044

Prévost E., 2003, ICES J. Mar. Sci., 60, 1177, 10.1016/j.icesjms.2003.08.001

Riley S.C., 1993, J. Freshw. Ecol., 8, 97, 10.1080/02705060.1993.9664838

Rivot E., 2002, Can. J. Fish. Aquat. Sci., 59, 1768, 10.1139/f02-145

Rivot E., 2004, Ecol. Model., 179, 463, 10.1016/j.ecolmodel.2004.05.011

Rosenberg A.E., 2005, N. Am. J. Fish. Manag., 25, 1395, 10.1577/M04-081.1

Schnute J., 1983, Can. J. Fish. Aquat. Sci., 40, 2153, 10.1139/f83-250

Speas D.W., 2004, N. Am. J. Fish. Manag., 24, 586, 10.1577/M02-193.1

Spiegelhalter D.J., 2002, J. R. Stat. Soc. B, 64, 1

Wang Y.-G., 1996, Can. J. Fish. Aquat. Sci., 53, 2533, 10.1139/f96-207

Wikle C.K., 2003, Ecology, 84, 1382, 10.1890/0012-9658(2003)084[1382:HBMFPT]2.0.CO;2

Wyatt R.J., 2002, Can. J. Fish. Aquat. Sci., 59, 695, 10.1139/f02-041

Wyatt R.J., 2003, Can. J. Fish. Aquat. Sci., 60, 997, 10.1139/f03-085