Hierarchical Bayesian Model Updating Using Modal Data Based on Dynamic Condensation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mottershead JE, Link M, Friswell MI (2011) The sensitivity method in finite element model updating: a tutorial. Mech Syst Signal Process 25:2275–2296. https://doi.org/10.1016/j.ymssp.2010.10.012
Mottershead JE, Friswell MI (1993) Model updating in structural dynamics: a survey. J Sound Vib 167:347–375. https://doi.org/10.1006/JSVI.1993.1340
Friswell MI, Mottershead JE (1995) Finite element model updating in structural dynamics, vol 38. Springer, Netherlands
Friswell MI, Mottershead JE (2001) Physical understanding of structures by model updating. In: Proceedings of COST F3 international conference on structural system identification, pp 81–96
Fritzen CP, Jennewein D, Kiefer T (1998) Damage detection based on model updating methods. Mech Syst Signal Process 12:163–186. https://doi.org/10.1006/MSSP.1997.0139
Sehgal S, Kumar H (2015) Structural dynamic model updating techniques: a state of the art review. Arch Comput Methods Eng 23(3):515–533. https://doi.org/10.1007/S11831-015-9150-3
Ereiz S, Duvnjak I, Fernando Jiménez-Alonso J (2022) Review of finite element model updating methods for structural applications. Structures 41:684–723. https://doi.org/10.1016/J.ISTRUC.2022.05.041
Levin RI, Lieven NAJ (1998) Dynamic finite element model updating using simulated annealing and genetic algorithms. Mech Syst Signal Process 12:91–120. https://doi.org/10.1006/MSSP.1996.0136
Kang F, Li J, Xu Q (2009) Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput Struct 87:861–870. https://doi.org/10.1016/J.COMPSTRUC.2009.03.001
Kuchak AJT, Marinkovic D, Zehn M (2021) Parametric investigation of a rail damper design based on a lab-scaled model. J Vib Eng Technol 9:51–60. https://doi.org/10.1007/S42417-020-00209-2/FIGURES/13
Beck JL, Katafygiotis LS (1998) Updating models and their uncertainties. I: Bayesian statistical framework. J Eng Mech 124:455–461. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455)
Katafygiotis LS, Beck JL (1998) Updating models and their uncertainties II. Model identifiability. J Eng Mech 124:463–467. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(463)
Beck JL (1989) Statistical system identification of structures. In: Proceedings of 5th international conference on structural safety and reliability
Cox RT (2005) Probability, frequency and reasonable expectation. Am J Phys 14:1. https://doi.org/10.1119/1.1990764
Jaynes ET, Marrison C, Hastie T, Tibshirani R, Friedman J (2003) Probability theory: the logic of science. In: The fundamentals of risk measurement. The elements of statistical learning: data mining, inference and prediction. Springer, New York
Yuen KV (2010) Bayesian methods for structural dynamics and civil engineering. John Wiley and Sons, New Jersey
Eltouny KA, Liang X (2021) Bayesian-optimized unsupervised learning approach for structural damage detection. Comput Civ Infrastruct Eng 36:1249–1269. https://doi.org/10.1111/MICE.12680
Yan WJ, Cao SZ, Ren WX, Yuen KV, Li D, Katafygiotis L (2021) Vectorization and distributed parallelization of Bayesian model updating based on a multivariate complex-valued probabilistic model of frequency response functions. Mech Syst Signal Process. 156:107615. https://doi.org/10.1016/J.YMSSP.2021.107615
Xu M, Guo J, Wang S, Li J, Hao H (2021) Structural damage identification with limited modal measurements and ultra-sparse Bayesian regression. Struct Control Heal Monit 28:e2729. https://doi.org/10.1002/stc.2729
Ni P, Han Q, Du X, Cheng X (2022) Bayesian model updating of civil structures with likelihood-free inference approach and response reconstruction technique. Mech Syst Signal Process 164:108204. https://doi.org/10.1016/j.ymssp.2021.108204
Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman & Hall, London
Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge
Jakaite L, Li D, Alberto M, Ferreira M, Lee Y (2022) Bayesian nonlinear models for repeated measurement data: an overview, implementation, and applications. Mathematics 10:898. https://doi.org/10.3390/MATH10060898
Behmanesh I, Moaveni B, Lombaert G, Papadimitriou C (2015) Hierarchical Bayesian model updating for structural identification. Mech Syst Signal Process 64–65:360–376. https://doi.org/10.1016/J.YMSSP.2015.03.026
Song M, Moaveni B, Papadimitriou C, Stavridis A (2019) Accounting for amplitude of excitation in model updating through a hierarchical Bayesian approach: application to a two-story reinforced concrete building. Mech Syst Signal Process 123:68–83. https://doi.org/10.1016/J.YMSSP.2018.12.049
Song M, Behmanesh I, Moaveni B, Papadimitriou C (2019) Modeling error estimation and response prediction of a 10-story building model through a hierarchical bayesian model updating framework. Front Built Environ 5:7. https://doi.org/10.3389/FBUIL.2019.00007/BIBTEX
Song M, Behmanesh I, Moaveni B, Papadimitriou C (2020) Accounting for modeling errors and inherent structural variability through a hierarchical Bayesian model updating approach: an overview. Sensors (Basel) 20:1–27. https://doi.org/10.3390/S20143874
Kwag S, Ju BS (2019) Application of a Bayesian hierarchical model to system identification of structural parameters. Eng Comput 36(2):455–474. https://doi.org/10.1007/S00366-019-00708-1
Sedehi O, Papadimitriou C, Katafygiotis LS (2020) Data-driven uncertainty quantification and propagation in structural dynamics through a hierarchical Bayesian framework. Probab Eng Mech 60:103047. https://doi.org/10.1016/J.PROBENGMECH.2020.103047
Jia X, Sedehi O, Papadimitriou C, Katafygiotis LS, Moaveni B (2022) Hierarchical Bayesian modeling framework for model updating and robust predictions in structural dynamics using modal features. Mech Syst Signal Process 170:108784. https://doi.org/10.1016/J.YMSSP.2021.108784
Ping M, Jia X, Papadimitriou C, Han X, Jiang C (2023) A hierarchical Bayesian framework embedded with an improved orthogonal series expansion for Gaussian processes and fields identification. Mech Syst Signal Process 187:109933. https://doi.org/10.1016/j.ymssp.2022.109933
Yan WJ, Katafygiotis LS (2015) A two-stage fast Bayesian spectral density approach for ambient modal analysis. Part I: posterior most probable value and uncertainty. Mech Syst Signal Process 54–55:139–155. https://doi.org/10.1016/j.ymssp.2014.07.027
Yuen K-V, Katafygiotis LS (2001) Bayesian time-domain approach for modal updating using ambient data. Probab Eng Mech 6:219–231. https://doi.org/10.1016/S0266-8920(01)00004-2
Yuen KV, Katafygiotis LS (2003) Bayesian fast Fourier transform approach for modal updating using ambient data. Adv Struct Eng 6:81–95. https://doi.org/10.1260/136943303769013183
Au SK, Zhang FL (2012) Fast Bayesian ambient modal identification incorporating multiple setups. J Eng Mech 138:800–815. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000385
Yan WJ, Katafygiotis LS (2015) A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups. Struct Saf 52:260–271. https://doi.org/10.1016/J.STRUSAFE.2014.06.004
Zhu Z, Au SK, Li B, Xie YL (2021) Bayesian operational modal analysis with multiple setups and multiple (possibly close) modes. Mech Syst Signal Process 150:107261. https://doi.org/10.1016/J.YMSSP.2020.107261
Mapa LPP, das Neves FA, Guimarães GP (2021) Dynamic substructuring by the Craig–Bampton method applied to frames. J Vib Eng Technol 9:257–266. https://doi.org/10.1007/S42417-020-00223-4/METRICS
Friswell MI, Garvey SD, Penny JET (1995) Model reduction using dynamic and iterated IRS techniques. J Sound Vib 186:311–323. https://doi.org/10.1006/JSVI.1995.0451
Sun H, Büyüköztürk O (2016) Probabilistic updating of building models using incomplete modal data. Mech Syst Sig Process. https://doi.org/10.1016/j.ymssp.2015.12.024
Yin T, Jiang QH, Yuen KV (2017) Vibration-based damage detection for structural connections using incomplete modal data by Bayesian approach and model reduction technique. Eng Struct 132:260–277. https://doi.org/10.1016/J.ENGSTRUCT.2016.11.035
Bansal S (2020) Bayesian model updating using modal data based on dynamic condensation. J Eng Mech. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001714
Paz M (1984) Dynamic condensation. Am Inst Aeronaut Astronaut 22:724–727. https://doi.org/10.2514/3.48498
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087. https://doi.org/10.1063/1.1699114
Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97. https://doi.org/10.2307/2334940
Geman S, Geman D (1984) Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans Pattern Anal Mach Intell PAMI-6:721–741. https://doi.org/10.1109/TPAMI.1984.4767596
Au SK, Zhang FL (2016) Fundamental two-stage formulation for Bayesian system identification, part I: general theory. Mech Syst Signal Process 66–67:31–42. https://doi.org/10.1016/j.ymssp.2015.04.025
Rosenkrantz RD (1978) Where do we stand on maximum entropy? In: Rosenkrantz RD (ed) E. T. Jaynes: papers on probability statistics and statistical physics. Springer, Dordrecht, pp 210–314
Jaynes ET (1968) Prior probabilities. IEEE Trans Syst Sci Cybern 4:227–241. https://doi.org/10.1109/TSSC.1968.300117
Behmanesh I, Moaveni B (2016) Accounting for environmental variability, modeling errors, and parameter estimation uncertainties in structural identification. J Sound Vib 374:92–110. https://doi.org/10.1016/j.jsv.2016.03.022
Yuen KV, Beck JL, Katafygiotis LS (2006) Efficient model updating and health monitoring methodology using incomplete modal data without mode matching. Struct Control Heal Monit 13:91–107. https://doi.org/10.1002/STC.144
Wu S, Angelikopoulos P, Beck JL, Koumoutsakos P (2019) Hierarchical stochastic model in Bayesian inference for engineering applications: theoretical implications and efficient approximation. ASCE-ASME J Risk Uncertain Eng Systt B Mech Eng. https://doi.org/10.1115/1.4040571/366084
Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472