Hierarchical 3D Cobalt‐Doped Fe3O4 Nanospheres@NG Hybrid as an Advanced Anode Material for High‐Performance Asymmetric Supercapacitors

Small - Tập 13 Số 33 - 2017
Meng Guo1, Jayaraman Balamurugan1, Xuyang Li1, Nam Hoon Kim1, Joong Hee Lee1,2
1Advanced Materials Institute of BIN Convergence Technology, (BK21 Plus Global) & Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
2Carbon Composite Research Centre, Department of Polymer Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea

Tóm tắt

Hierarchical nanostructure, high electrical conductivity, extraordinary specific surface area, and unique porous architecture are essential properties in energy storage and conversion studies. A new type of hierarchical 3D cobalt encapsulated Fe3O4 nanosphere is successfully developed on N‐graphene sheet (Co−Fe3O4 NS@NG) hybrid with unique nanostructure by simple, scalable, and efficient solvothermal technique. When applied as an electrode material for supercapacitors, hierarchical Co−Fe3O4 NS@NG hybrid shows an ultrahigh specific capacitance (775 F g−1 at a current density of 1 A g−1) with exceptional rate capability (475 F g−1 at current density of 50 A g−1), and admirable cycling performance (97.1% capacitance retention after 10 000 cycles). Furthermore, the fabricated Co−Fe3O4 NS@NG//CoMnO3@NG asymmetric supercapacitor (ASC) device exhibits a high energy density of 89.1 Wh kg−1 at power density of 0.901 kW kg−1, and outstanding cycling performance (89.3% capacitance retention after 10 000 cycles). Such eminent electrochemical properties of the Co−Fe3O4 NS@NG are due to the high electrical conductivity, ultrahigh surface area, and unique porous architecture. This research first proposes hierarchical Co−Fe3O4 NS@NG hybrid as an ultrafast charge−discharge anode material for the ASC device, that holds great potential for the development of high‐performance energy storage devices.

Từ khóa


Tài liệu tham khảo

10.1126/science.1139792

10.1126/science.aab3798

10.1039/c3ee41143e

10.1038/nmat2297

10.1039/C5EE03149D

10.1039/C4TA05565A

10.1002/aenm.201400977

Shen L., 2015, Adv. Energy Mater., 7, 27518

10.1016/j.nanoen.2014.09.030

Du W., 2014, J. Mater. Chem. A, 2, 749

10.1038/srep07274

10.1039/C4TA01899K

10.1002/aenm.201401882

10.1002/aenm.201200088

10.1039/C6TA02582J

10.1021/acsnano.5b00520

10.1002/aenm.201601234

10.1002/anie.201502226

10.1016/j.nanoen.2016.05.042

10.1002/aenm.201402176

10.1016/j.apcatb.2012.01.020

10.1021/nn500454n

10.1039/C6TA03153F

10.1016/j.apcatb.2016.01.005

10.1039/C6EE00941G

10.1016/j.nanoen.2014.10.022

10.1016/j.jpowsour.2016.01.071

10.1021/ja3030565

10.1002/adma.201304683

10.1039/C6TA03132C

10.1039/C6TA07400F

10.1002/smll.201601722

10.1002/adma.201304137

10.1016/j.jpowsour.2015.05.029

10.1016/j.nanoen.2014.04.009

10.1002/adma.201102838

10.1021/nn3046133

10.1002/adma.200904285

10.1021/cm801932u

10.1002/celc.201500046

10.1021/acsami.6b05415

10.1038/srep02978

10.1016/j.bios.2016.04.040

10.1002/adfm.201603716

10.1016/j.nanoen.2014.07.021

10.1002/aenm.201400236

10.1016/j.jpowsour.2014.10.183

10.1002/adfm.201303600

10.1016/j.nanoen.2011.11.001

10.1021/acsami.5b03126

10.1002/adfm.201670143

10.1002/aenm.201401172

10.1039/C5TA07439H

10.1002/adfm.201600879

10.1016/j.nanoen.2016.02.019

10.1039/C6TA08330G

10.1002/adma.201601781

10.1002/adfm.201403554

10.1002/admi.201500348