Hexagonal warping effect on Majorana zero modes at the ends of superconducting vortex lines in doped strong 3D topological insulators

Science China Physics, Mechanics & Astronomy - Tập 62 - Trang 1-10 - 2019
Chuang Li1,2, Lun-Hui Hu2,3, Fu-Chun Zhang2,4,5
1Department of Physics, Zhejiang University, Hangzhou, China
2Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, China
3Department of Physics, University of California, San Diego, USA
4CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China
5Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China

Tóm tắt

In a superconducting topological insulator, a superconducting vortex line can trap a one-dimensional topological band with localized Majorana zero modes at the ends. Here, we study the effect of hexagonal warping and its corresponding symmetry-breaking effect on vortex phase transition. We perform both analytical calculations based on a semiclassical formula and numerical calculations based on full quantum mechanics using the Bogoliubov-de Gennes equation. We find that the hexagonal warping term extends the topological region of the vortex line as the chemical potential changes and leads to MZMs, even in the absence of topological surface states.

Tài liệu tham khảo

C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod. Phys. 88, 035005 (2016), arXiv: 1505.03535.

B. A. Bernevig, and T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, 2013).

S.-Q. Shen, Topological Insulators, vol. 174 (Springer, Cham, 2012).

M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318, 766 (2007), arXiv: 0710.0582.

C. Liu, T. L. Hughes, X. L. Qi, K. Wang, and S. C. Zhang, Phys. Rev. Lett. 100, 236601 (2008), arXiv: 0801.2831.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438 (2009).

Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013), arXiv: 1304.5693.

C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008), arXiv: 0707.1889.

Q. F. Liang, Z. Wang, and X. Hu, Phys. Rev. B 89, 224514 (2014), arXiv: 1302.4337.

L. Fu, and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008), arXiv: 0707.1692.

R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010), arXiv: 1002.4033.

L. H. Wu, Q. F. Liang, Z. Wang, and X. Hu, J. Phys.-Conf. Ser. 393, 012018 (2012).

J. Alicea, Rep. Prog. Phys. 75, 076501 (2012), arXiv: 1202.1293.

S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science 346, 602 (2014), arXiv: 1410.0682.

Z. Z. Li, F. C. Zhang, and Q. H. Wang, Sci. Rep. 4, 6363 (2015).

S. D. Sarma, M. Freedman, and C. Nayak, npj Quantum Inf. 1, 15001 (2015).

M. Sato, and S. Fujimoto, J. Phys. Soc. Jpn. 85, 072001 (2016), arXiv: 1601.02726.

R. Aguado, arXiv: 1711.00011.

J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Phys. Rev. Lett. 114, 017001 (2015), arXiv: 1312.7110.

L. H. Hu, C. Li, D. H. Xu, Y. Zhou, and F. C. Zhang, Phys. Rev. B 94, 224501 (2016).

H. H. Sun, K. W. Zhang, L. H. Hu, C. Li, G. Y. Wang, H. Y. Ma, Z. A. Xu, C. L. Gao, D. D. Guan, Y. Y. Li, C. Liu, D. Qian, Y. Zhou, L. Fu, S. C. Li, F. C. Zhang, and J. F. Jia, Phys. Rev. Lett. 116, 257003 (2016), arXiv: 1603.02549.

P. Hosur, P. Ghaemi, R. S. K. Mong, and A. Vishwanath, Phys. Rev. Lett. 107, 097001 (2011), arXiv: 1012.0330.

C. K. Chiu, P. Ghaemi, and T. L. Hughes, Phys. Rev. Lett. 109, 237009 (2012), arXiv: 1203.2958.

Y. S. Hor, J. G. Checkelsky, D. Qu, N. P. Ong, and R. J. Cava, J. Phys. Chem. Solids 72, 572 (2011), arXiv: 1006.0317.

G. Xu, B. Lian, P. Tang, X. L. Qi, and S. C. Zhang, Phys. Rev. Lett. 117, 047001 (2016), arXiv: 1511.06942.

P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K. Okazaki, Z. Wang, J. Wen, G. D. Gu, H. Ding, and S. Shin, Science 360, 182 (2018), arXiv: 1706.05163.

D. Wang, L. Kong, P. Fan, H. Chen, S. Zhu, W. Liu, L. Cao, Y. Sun, S. Du, J. Schneeloch, R. Zhong, G. Gu, L. Fu, H. Ding, and H. J. Gao, Science 362, 333 (2018), arXiv: 1706.06074.

L. Fu, Phys. Rev. Lett. 103, 266801 (2009), arXiv: 0908.1418.

Z. Alpichshev, J. G. Analytis, J. H. Chu, I. R. Fisher, Y. L. Chen, Z. X. Shen, A. Fang, and A. Kapitulnik, Phys. Rev. Lett. 104, 016401 (2010), arXiv: 0908.0371.

C. X. Liu, X. L. Qi, H. J. Zhang, X. Dai, Z. Fang, and S. C. Zhang, Phys. Rev. B 82, 045122 (2010), arXiv: 1005.1682.

L. Fu, and C. L. Kane, Phys. Rev. B 76, 045302 (2007).

A. Y. Kitaev, Phys.-Usp. 44, 131 (2001).

S. S. Qin, L. H. Hu, C. C. Le, J. F. Zeng, F. C. Zhang, C. Fang, and J. P. Hu, arXiv: 1901.04932.

G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011), arXiv: 1106.3125.

C. K. Chiu, M. J. Gilbert, and T. L. Hughes, Phys. Rev. B 84, 144507 (2011), arXiv: 1108.4711.