Hexagonal pencil-like CdS nanorods: Facile synthesis and enhanced visible light photocatalytic performance

Pleiades Publishing Ltd - Tập 89 - Trang 1195-1200 - 2015
Liang An1, Guanghui Wang1, Lei Zhao1, Yong Zhou1, Fang Gao1, Yang Cheng1
1College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, PR China

Tóm tắt

In the present study, hexagonal pencil-like CdS nanorods have been successfully synthesized through a typical facile and economical one-step hydrothermal method without using any surfactant or template. The product was characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and energy dispersive analysis of X-ray (EDX). The results revealed that the prepared CdS photocatalyst consisted of a large quantity of straight and smooth solid hexagonal nanorods and a few nanoparticles. The photocatalytic activities of CdS nanorods and commercial CdS powders were investigated by the photodegradation of Orange II (OII) in aqueous solution under visible light, and the CdS nanorods presented the highest photocatalytic activity. Its photocatalytic efficiency enhancement was attributed to the improved transmission of photogenerated electron-hole pairs in the CdS nanostructures. The present findings may provide a facile approach to synthesize high efficient CdS photocatalysts.

Tài liệu tham khảo

C. W. Lam, S. R. Lim, and J. M. Schoenung, J. Hazard. Mater. 189, 315 (2011). G. M. Mudd and J. Patterson, Environ. Pollut. 158, 1252 (2010). J. Diwakar and J. K. Thakur, Water Air Soil Pollut. 223, 3207 (2012). A. M. Azar, A. G. Jelogir, G. R. N. Bidhendi, and N. Zaredar, Environ. Monit. Assess. 175, 651 (2011). T. Y. Wu, A. W. Mohammad, J. M. Jahim, and N. Anuar, J. Environ. Manag. 91, 1467 (2010). S. M. King, P. A. Leaf, A. C. Olson, P. Z. Ray, and M. A. Tarr, Chemosphere 95, 415 (2014). T. K. Tseng, Y. S. Lin, Y. J. Chen, and H. Chu, Int. J. Mol. Sci. 11, 2336 (2010). Y. Wang, C. Feng, M. Zhang, J. Yang, and Z. Zhang, Appl. Catal. B: Environ. 100, 84 (2010). Z. Han, L. Liao, Y. Wu, H. Pan, S. Shen, and J. Chen, J. Hazard. Mater. 217, 100 (2012). G. Cheng, T. Hao, H. Ke, F. Gong, J. Chen, and J. Shang, Micro Nano Lett. 8, 473 (2013). R. Molinari, P. Argurio, and C. Lavorato, Curr. Org. Chem. 17, 2516 (2013). L. N. Yin, Y. Li, J. Wang, Y. M. Kong, Y. Zhai, B. X. Wang, K. Li, and X. D. Zhang, Russ. J. Phys. Chem. A 86, 2049 (2012). G. Zhang, G. Kim, and W. Choi, Energ. Environ. Sci. 7, 954 (2014). K. Zhang and L. Guo, Catal. Sci. Technol. 3, 1672 (2013). I. A. Kirovskaya, O. T. Timoshenko, and E. O. Karpova, Russ. J. Phys. Chem. A 85, 557 (2011). S. K. Maji, A. K. Dutta, S. Dutta, D. N. Srivastava, P. Paul, A. Mondal, and B. Adhikary, Appl. Catal. B: Environ. 126, 265 (2012). M. Farbod and E. Jafarpoor, Ceram. Int. 40, 6605 (2014). X. Liu, Y. Yan, Z. Da, W. Shi, C. Ma, P. Lv, Y. Tang, G. Yao, Y. Wu, P. Huo, and Y. Yan, Chem. Eng. J. 241, 243 (2014). X. Y. Li, C. G. Hu, X. Wang, and Y. Xi, Appl. Surf. Sci. 258, 4370 (2012). S. R. Bhalerao, S. S. Arbuj, S. B. Rane, J. D. Ambekar, and U. P. Mulik, Nanosci. Nanotechnol. Lett. 6, 204 (2014). C. X. Li, L. J. Han, R. J. Liu, H. H. Li, S. J. Zhang, and G. J. Zhang, J. Mater. Chem. 22, 23815 (2012). Y. Liu, L. Zhou, Y. Hu, C. Guo, H. Qian, F. Zhang, and X. W. Lou, J. Mater. Chem. 21, 18359 (2011). J. Jin, J. Yu, G. Liu, and P. K. Wong, J. Mater. Chem. A 1, 10927 (2013). J. Wang, B. Li, J. Chen, N. Li, J. Zheng, J. Zhao, and Z. Zhu, J. Alloys Compd. 535, 15 (2012). Z. Wang, L. Pan, L. Wang, and H. Wang, Solid State Sci. 13, 970 (2011). J. Kanagaraj, T. S. Velan, and A. B. Mandal, Clean Technol. Envir. 14, 565 (2012). F. Wu, H. Hua, and N. Deng, Environ. Chem. 19, 348 (2000). Q. Wang, J. Hui, J. Li, Y. Cai, S. Yin, F. Wang, and B. Su, Appl. Surf. Sci. 283, 577 (2013) S. Yao, Y. Zhang, Z. Shi, and S. Wang, Russ. J. Phys. Chem. A 87, 69 (2013).