Các phương pháp giải quyết theo hướng heuristic cho các vấn đề lập kế hoạch rừng hiện trường

Springer Science and Business Media LLC - Tập 17 - Trang 193-203 - 1995
Alan T. Murray1, Richard L. Church1
1National Center for Geographic Information and Analysis, Department of Geography, University of California at Santa Barbara, Santa Barbara, USA

Tóm tắt

Các vấn đề lập kế hoạch rừng hiện trường thường rất khó giải quyết do kích thước và cấu trúc ràng buộc của chúng. Bài báo này trình bày ba phương pháp giải quyết theo hướng heuristic cho các vấn đề lập kế hoạch rừng hiện trường. Chúng tôi phát triển các quy trình giải quyết dựa trên phương pháp Hoán đổi, Làm nguội mô phỏng và Tìm kiếm Tabu. Những phương pháp này đại diện cho các chiến lược giải quyết mới và độc đáo cho vấn đề này. Các kết quả được cung cấp cho ứng dụng vào hai vấn đề lập kế hoạch rừng thực tế và cho thấy rằng các phương pháp này cung cấp các giải pháp gần tối ưu trong một khoảng thời gian máy tính tương đối ngắn.

Từ khóa


Tài liệu tham khảo

Barahona F, Weintraub A, Epstein R (1992) Habitat dispersion in forest planning and stable set problem. Oper Res 40 [Suppl] (1) S14-S21 Bullard S, Sherali H, Klemperer WD (1985) Estimating optimal thinning and rotation for mixed-species timber stands using a random search algorithm. Forest Sci 31:303–315 Church R, Barber K (1992) Disaggregating forest management plans to treatment areas. In proceedings of Stand Inventory Technologies 92, Portland, Oregon, September 13–17, 287–295 Church R, Lanter D, Loban S (1992) VIP: a spatial decision support system for the US Forest Service. Working paper, Department of Geography, UCSB Clements SE, Dallain PL, Jamnick MS (1990) An operational, spatially constrained harvest scheduling model. Can J For Res 20:1438–1447 Conover W (1980) Practical nonparametric statistics. 2nd ed Wiley, New York Covington WW, Wood DB, Young DL, Dykstra DP, Garrett LD (1988) TEAMS: a decision support system for multiresource management. Forestry 86(8):25–33 Dahlin B, Sallnas O (1993) Harvest scheduling under adjacency constraints — a case study from the Swedish sub-alpine region. Forest Res 8:281–290 Densham P, Rushton G (1992) A more efficient heuristic for solving large p-median problems. Pap Reg Sci 71:307–329 de Werra D, Hertz A (1989) Tabu search techniques: A tutorial and an application to neural networks. OR Spektrum 11:131–141 Glover F (1989) Tabu search — Part I. ORSA J Comp 1:190–206 Glover F (1990) Tabu search: A tutorial. Interfaces 20:74–94 Goldberg J, Paz L (1991) Locating emergency vehicle bases when service time depends on call location. Transp Sci 25:264–280 Hertz A, de Werra D (1990) The Tabu search metaheuristic: How we used it. Ann Math Artificial Intellig 1:111–121 Hof J, Joyce L (1992) Spatial optimization for wildlife and timber in managed forest ecosystems. Forest Sci 38:489–508 Hokans RH (1983) Evaluating spatial feasibility of harvest schedules with simulated stand-selection decisions. J Forestry 81:601–603, 613 Jamnick MS, Walters K (1991) Harvest blocking, adjacency constraints and timber harvest volumes. Syst Anal Forest Resourc Sympos 3–7:255–261 Jamnick MS, Davis LS, Gilles JK (1990) Influence of land classification systems on timber harvest scheduling models. Can J Forest Res 20:172–178 Johnson KN, Stuart T (1987) FORPLAN version 2: mathematical programmer's guide. Land Manag Plan Syst Sect Rep U.S.D.A. Forest Service, Washington, DC Jones JG, Weintraub A, Meacham M, Magendzo A (1991 a) A heuristic process for solving mixed-integer land management and transportation planning models. Intermountain Research Station Technical Report INT-477, U.S.D.A. Forest Service Jones JG, Meneghin BJ, Kirby MW (1991 b) Formulating adjacency constraints in linear optimization models for scheduling projects in tactical planning. Forest Sci 37:1283–1297 Kirby M, Hager W, Wong P (1986) Simultaneous planning of wildland management and transportation alternatives. TIMS Stud Manag Sci 21:371–387 Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220:671–680 Lin S, Kernighan B (1973) An effective heuristic algorithm for the traveling salesman problem. Oper Res 21:498–516 Lockwood C, Moore T (1993) Harvest scheduling with spatial constraints: a simulated annealing approach. Can J Forest Res 23:468–478 Mealey SP, Lipscomb JF, Johnson KN (1982) Solving the habitat dispersion problem in forest planning. Trans N Am Wildl Natur Resourc Conf 47:142–153 Meneghin BJ, Kirby MW, Jones JG (1988) An algorithm for writing adjacency constraints efficiently in linear programming models. In The 1988 Symposium on systems analysis in forest resources. U.S. Forest Service Rocky Mountain Forest and Range Experiment Station General Technical Report RM-161, pp 46–53 Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092 Murray AT, Church RL (1993 a) Constructing and selecting adjacency constraints. (Submitted for review) Murray AT, Church RL (1993 b) Applying simulated annealing to location planning models. Working paper, Department of Geography, UCSB Murray AT, Church RL (1994) Measuring the efficacy of adjacency constraint structure in forest planning. (Submitted for review) Nelson J, Brodie JD (1990) Comparison of random search algorithm and mixed integer programming for solving area-based forest plans. Can J Forest Res 20:934–942 Nelson J, Finn S (1991) The influence of cut-block size and adjacency rules on harvest levels and road networks. Can J Forest Res 21:595–600 Nelson J, Howard A (1991) A three-stage heuristic procedure for allocating spatially and temporally feasible cutting rights on public lands. Can J Forest Res 21:726–768 Nelson J, Brodie JD, Sessions J (1991) Integrating short-term, area-based logging plans with long-term harvest schedules. Forest Sci 37:101–122 O'Hara A, Faaland B, Bare B (1989) Spatially constrained timber harvest scheduling. Can J Forest Res 19:715–724 Roise JP (1986) A nonlinear programming approach to stand optimization. Forest Sci 32:735–748 Roise JP (1990) Multicriteria nonlinear programming for optimal spatial allocation of stands. Forest Sci36: 487–501 Schrage L (1989) Linear, integer and quadratic programming with LINDO, user's manual, fourth edition. The Scientific Press, San Francisco Sessions J, Sessions JB (1991) Scheduling and network analysis program. User's guide, Department of Forest Management. Oregon State University, Corvallis, OR Teitz M, Bart P (1968) Heuristic methods for estimating the generalized vertex median of a weighted graph. Oper Res 16:955–961 Thompson EF, Halterman BG, Lyon TJ, Miller RL (1973) Integrating timber and wildlife management planning. Forestry Chronicle 49:247–250 Torres RJM, Brodie JD (1990) Adjacency constraints in harvest scheduling: an aggregation heuristic. Can J Forest Res 20:978–986 Torres RJM, Brodie JD, Sessions J (1991) The use of relaxation to solve the habitat dispersion problem. (Working paper) van Laarhoven P, Aarts E (1987) Simulated annealing: Theory and application. D. Reidel, Dordrecht Walker HD, Preiss S (1988) Operational planning using mixed integer programming. Forestry Chronicle 64:485–488 Yoshimoto A, Brodie JD (1992) Comparative efficiency of algorithms to generate adjacency constraints. Can J Forest Res (in press)