Heterostructures based on gapless graphene with different Fermi velocities
Allerton Press - 2017
Tóm tắt
The properties of a single heterojunction between gapless graphenes with identical work functions but different Fermi velocities have been investigated. Reflection and transmission coefficients are obtained for charge carriers passing through this junction. It is shown that total internal reflection (with a critical angle the same as for light incident at an interface between two media) may occur in it.
Từ khóa
Tài liệu tham khảo
X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, “Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors,” Phys. Rev. Lett. 100, 206803 (2008).
K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh Electron Mobility in Suspended Graphene,” Solid State Commun. 146, 351 (2008).
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The Electronic Properties of Graphene,” Rev. Mod. Phys. 81, 109 (2009).
P. B. Sorokin and L. A. Chernozatonskii, “Graphene-Based Semiconductor Nanostructures,” Phys. Usp. 56, 105 (2013).
P. V. Ratnikov and A. P. Silin, “Size Quantization in Planar Graphene-Based Heterostructures: Pseudospin Splitting, Interface States, and Excitons,” JETP. 114(3), 512 (2012).
C. Hwang, D. A. Siegel, S.-K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, and A. Lanzara, “Fermi Velocity Engineering in Graphene by Substrate Modification,” Sci. Rep. 2, 590 (2012).
D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea, and A. K. Geim, “Dirac Cones Reshaped by Interaction Effects in Suspended Grapheme,” Nature Phys. 7, 701 (2001).
P. V. Ratnikov and A. P. Silin, “Novel Type of Superlattices Based on Gapless Graphene with the Alternating Fermi Velocity,” JETP Lett. 100(5), 311 (2014).
A. V. Kolesnikov, R. Lipperheide, A. P. Silin, and U. Wille, “Interface States in Junctions of Two Semiconductors with Intersecting Dispersion Curves,” Europhys. Lett. 43, 331 (1998).
E. A. Andryushin, A. P. Silin, and S. A. Vereshchagin, “Interface States in Narrow-Gap Semiconductor Structure without Band Inversion,” Phys. Low-Dim. Struct. 3/4, 79 (2000).
P. V. Ratnikov and A. P. Silin, “Boundary States in GrapheneHeterojunctions,” Phys. Solid State. 52(8), 1763 (2010).
E. A. Andryushin, A. P. Silin, and S. A. Vereshchagin, “Spin Splitting of Energy Levels in Asymmetric Narrow-Gap Semiconductor Heterostructures,” Phys. Low-Dim. Struct. 3/4, 85 (2000).
P. V. Ratnikov and A. P. Silin, “Pseudospin Splitting of the Energy Spectrum of Planar Polytype Graphenebased Supelattices,” Phys. Wave Phenom. 23(3), 180 (2015) [DOI: 10. 3103/S1541308X15030036].
A. P. Silin and S. V. Shubenkov, “Boundary Conditions for Narrow-Gap Heterostructures Described by the Dirac Equation,” Phys. Solid. State. 40(7), 1223 (1998).
D. V. Sivukhin, General Course of Physics. Vol. VI: Optics (Fizmatlit, MFTI, Moscow, 2002) [in Russian].