Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting

Small - Tập 12 Số 11 - Trang 1469-1478 - 2016
Wenhui Wang1, Jingya Dong1, Xiaozhou Ye1, Yang Li1, Yurong Ma1, Limin Qi1
1Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, China

Tóm tắt

Heterostructured TiO2 nanorod@nanobowl (NR@NB) arrays consisting of rutile TiO2 nanorods grown on the inner surface of arrayed anatase TiO2 nanobowls are designed and fabricated as a new type of photoanodes for photoelectrochemical (PEC) water splitting. The unique heterostructures with a hierarchical architecture are readily fabricated by interfacial nanosphere lithography followed by hydrothermal growth. Owing to the two‐dimensionally arrayed structure of anatase nanobowls and the nearly radial alignment of rutile nanorods, the TiO2 NR@NB arrays provide multiple scattering centers and hence exhibit an enhanced light harvesting ability. Meanwhile, the large surface area of the NR@NB arrays enhances the contact with the electrolyte while the nanorods offer direct pathways for fast electron transfer. Moreover, the rutile/anatase phase junction in the NR@NB heterostructure improves charge separation because of the facilitated electron transfer. Accordingly, the PEC measurements of the TiO2 NR@NB arrays on the fluoride‐doped tin oxide (FTO) substrate show significantly enhanced photocatalytic properties for water splitting. Under AM1.5G solar light irradiation, the unmodified TiO2 NR@NB array photoelectrode yields a photocurrent density of 1.24 mA cm–2 at 1.23 V with respect to the reversible hydrogen electrode, which is almost two times higher than that of the TiO2 nanorods grown directly on the FTO substrate.

Từ khóa


Tài liệu tham khảo

10.1021/cr1002326

10.1039/C2CS35266D

10.1039/C2EE22618A

10.1039/C5EE00457H

10.1016/j.jphotochemrev.2013.10.006

10.1039/c4nr01181c

10.1016/j.nantod.2013.12.002

10.1039/C5TA00257E

10.1002/smll.201401298

10.1039/C5EE02300A

10.1002/anie.201503410

10.1002/adfm.201502461

10.1002/smll.201401919

10.1002/adma.201500888

10.1002/smll.201303830

10.1007/s11434-015-0841-9

10.1002/smll.201400622

10.1039/C4EE03271C

10.1039/C4TA04461D

10.1038/238037a0

10.1021/cr500008u

10.1021/cr400633s

10.1021/cr400627u

10.1021/cr500201c

10.1039/c3ee43165g

10.1021/jp5041019

10.1039/c3ta01384g

10.1039/C4TA03895A

10.1021/cr500061m

10.1021/nl500022z

10.1039/c3nr02766j

10.1016/j.nanoen.2013.06.017

10.1016/j.nanoen.2012.10.010

10.1039/C4CS00408F

10.1021/nl2029392

10.1016/j.apcatb.2014.04.032

10.1039/C4TA06498D

10.1016/j.nanoen.2014.03.002

10.1016/j.nanoen.2012.01.001

10.1002/adma.201104428

10.1016/j.nanoen.2013.01.010

10.1039/C4CP03043E

10.1039/C3CS60370A

10.1016/j.nantod.2011.10.002

10.1002/adfm.201001177

10.1039/c3tc30118d

10.1002/smll.201402078

10.1038/nmat3697

10.1021/acs.chemmater.5b00230

10.1021/nn300679d

10.1021/nl2042968

10.1021/nn4040876

10.1039/C5TA00027K

10.1021/nl201766h

10.1002/adma.200801354

10.1002/cssc.201200708

10.1021/cm9031946

10.1111/j.1151-2916.1996.tb09038.x

10.1039/C1EE02766B

10.1021/jp3079887