Heteroscedastic discriminant analysis and reduced rank HMMs for improved speech recognition
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akaike, 1974, A new look at the statistical identification model, IEEE Transactions on Automatic Control, 19, 716, 10.1109/TAC.1974.1100705
Aubert, X., Haeb-Umbach, R., Ney, H., 1993. Continuous mixture densities and linear discriminant analysis for improved context-dependent acoustic models. In: Proc. of ICASSP, Vol. 2, pp. 648–651
Ayer, C.M., 1992. A discriminatively derived transform capable for improved speech recognition accuracy. Ph.D. Thesis, University of London
Ayer, C.M., Hunt, M.J., Brookes, D.M., 1993. A discriminately derived linear transform for improved speech recognition. In: Proc. Eurospeech 93, Vol. 1, pp. 583–586
Bartlett, 1947, Multivariate analysis, J. Roy. Statist. Soc. B, 9, 176
Baum, 1970, A maximization technique occuring in the statistical analysis of probabilistic functions of Markov chains, Ann. Math. Stat., 41, 164, 10.1214/aoms/1177697196
Bocchieri, 1993, Discriminative feature selection for speech recognition, Computer Speech and Language, 7, 229, 10.1006/csla.1993.1012
Brown, P.F., 1987. The acoustic-modelling problem in automatic speech recognition. Ph.D. Thesis, Carnegie Mellon University
Campbell, 1984, Canonical variate analysis – a general formulation, Australian Journal of Statistics, 26, 86, 10.1111/j.1467-842X.1984.tb01271.x
Cohen, 1989, Application of an auditory model to speech recognition, J. Acoust. Soc. Amer., 85, 2623, 10.1121/1.397756
Davis, 1980, Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentances, IEEE Transactions on Acoustics, Speech, and Signal Processing, 28, 357, 10.1109/TASSP.1980.1163420
Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via EM algorithm. J. Roy. Statist. Soc. 1–38
Dillon, W.R., Goldstein, M., 1984. Multivariate Analysis. Wiley, New York
Doddington, G., 1989. Phonetically sensitive discriminants for improved speech recognition. In: Proceedings 1989 ICASSP, no. S10 b.11, pp. 556–559
Duda, R.O., Hart, P.B., 1973. Pattern Classification and Scene Analysis. Wiley, New York
Fisher, 1936, The use of multiple measurements in taxonomic problems, Ann. Eugen., 7, 179, 10.1111/j.1469-1809.1936.tb02137.x
Fisher, 1938, The statistical utilization of multiple measurements, Ann. Eugen., 8, 376, 10.1111/j.1469-1809.1938.tb02189.x
Furui, 1986, Speaker-independent isolated word recognition using dynamic features of speech spectrum, IEEE Transactions on Acoustics, Speech, and Signal Processing, 34, 52, 10.1109/TASSP.1986.1164788
Haeb-Umbach R., Ney H., 1992. Linear discriminant analysis for improved large vocabulary continuous speech recognition. In: Proc. ICASSP, Vol. 1, pp. 13-16
Haeb-Umbach, R., Geller, D., Ney, H., 1993. Improvement in connected digit recognition using linear discriminant analysis and mixture densities. In: Proceedings of ICASSP, pp. 239–242
Hastie, T., Tibshirani, R., 1994. Discriminant analysis by gaussian mixtures. Tech. Rep., AT&T Bell Laboratories
Hermansky, 1990, Perceptual linear predictive (plp) analysis of speech, J. Acoust. Soc. Amer., 87, 1738, 10.1121/1.399423
Hunt, M., 1979. A statistical approach to metrics for word and syllable recognition. In: 98th Meeting of the Acoustical Society of America, November
Hunt M.J., Lefebvre C., 1989. A comparison of several acoustic representations for speech recognition with degraded and undegraded speech. In: Proc. ICASSP, Vol. 1, pp. 262-265
Jankowski Jr., C.R., 1992. A comparison of auditory models for automatic speech recognition. Master's Thesis, MIT
Kumar, N., 1997. Investigation of silicon auditory models and generalization of linear discriminant analysis for improved speech recognition. Ph.D. Thesis, Johns Hopkins University, http://olympus.ece.jhu.edu/archives/phd/nkumar97/index.html
Kumar, N., Andreou, A., 1996a. On generalizations of linear discriminant analysis. Tech. Rep., Electrical and Computer Engineering Technical Report-96-07, April
Kumar, N., Andreou, A., 1996b. Generalization of linear discriminant analysis in maximum likelihood framework. In: Proceedings of Joint Meeting of American Statistical Association, Chicago, IL, August
Kumar, N., Andreou, A., submitted. Heteroscedastic discriminant analysis: maximum likelihood feature extraction for heteroscedastic models. IEEE Transactions on Pattern Analysis and Machine Intelligence
Kumar, N., Neti, C., Andreou, A., 1995. Application of discriminant analysis to speech recognition with auditory features. In: Proceedings of the 15th Annual Speech Research Symposium, Johns Hopkins University, Baltimore, MD, pp. 153–160, June
Rabiner, 1975, An algorithm for determining the endpoints of isolated utterances, Bell Syst. Tech. J., 54, 297, 10.1002/j.1538-7305.1975.tb02840.x
Rao, C.R., 1965. Linear Statistical Inference and its Applications. Wiley, New York
Rissanen, J., 1989. Stochastic Complexity in Statistical Inquiry. Series in Computer Science, Vol. 15. World Scientific, Singapore
Roth R., Baker J.K., Baker J.M., Gillick L., Hunt M.J., Ito Y., Loewe S., Orloff J., Peskin B., Scattone F., 1993. Large vocabulary continuous speech recognition of wall street journal data. In: Proc. ICASSP, Vol. 2, pp. 640–643
Schwarz, 1978, Estimating the dimension of a model, Annals of Statistics, 6, 461, 10.1214/aos/1176344136
Siohan O., 1995. On the robustness of linear discriminant analysis as a preprocessing step for noisy speech recognition. In: Proc. ICASSP, Vol. 1, pp. 125–128
Sun, D., 1997. “Feature dimensionality reduction using reduced-rank maximum likelihood estimation for hidden Markov models.” In: International Conference on Language and Speech, pp. 244–247
Wood L., Pearce D., Novello F., 1991. Improved vocabulary-independent sub-word HMM modelling. In: Proc. ICASSP, Vol. 1, pp. 181–184
Woodland P.C., Cole D.R., 1991. Optimising hidden markov models using discriminative output distribution. In: Proc. ICASSP, Vol. 1, pp. 545–548
Yu, G., Russell, W., Schwartz, R., Makhoul, J., 1990. Discriminant analysis and supervised vector quantization for continuous speech recognition. In: Proceedings of ICASSP, pp. 685–688, April