Heterologous protein expression enhancement of Komagataella phaffii by ammonium formate induction based on transcriptomic analysis

Biochemical Engineering Journal - Tập 185 - Trang 108503 - 2022
Aibo Feng1, Jingyao Zhou1, Hongli Mao1, Hualan Zhou1, Jianguo Zhang1
1Shanghai Engineering Research Center for Food Rapid Detection, Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China

Tài liệu tham khảo

Juturu, 2018, Heterologous protein expression in Pichia pastoris: latest research progress and applications, ChemBioChem, 19, 7, 10.1002/cbic.201700460 Chen, 2021, Effective synthesis of Rebaudioside A by whole-cell biocatalyst Pichia pastoris, Biochem. Eng. J., 175, 10.1016/j.bej.2021.108117 Gasser, 2013, Pichia pastoris: protein production host and model organism for biomedical research, Future Microbiol., 8, 191, 10.2217/fmb.12.133 Ding, 2019, Efficient butanol production using corn-starch and waste Pichia pastoris semi-solid mixture as the substrate, Biochem. Eng. J., 143, 41, 10.1016/j.bej.2018.12.017 Celik, 2012, Production of recombinant proteins by yeast cells, Biotechnol. Adv., 30, 1108, 10.1016/j.biotechadv.2011.09.011 Gasser, 2018, A yeast for all seasons - is Pichia pastoris a suitable chassis organism for future bioproduction?, FEMS Microbiol. Lett., 365, fny181, 10.1093/femsle/fny181 Kang, 2017, Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications, World J. Microbiol. Biotechnol., 33, 19, 10.1007/s11274-016-2185-2 Fischer, 2019, Current advances in engineering tools for Pichia pastoris, Curr. Opin. Biotechnol., 59, 175, 10.1016/j.copbio.2019.06.002 Schwarzhans, 2017, Towards systems metabolic engineering in Pichia pastoris, Biotechnol. Adv., 35, 681, 10.1016/j.biotechadv.2017.07.009 Pena, 2018, Metabolic engineering of Pichia pastoris, Metab. Eng., 50, 2, 10.1016/j.ymben.2018.04.017 Potvin, 2012, Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review, Biochem. Eng. J., 64, 91, 10.1016/j.bej.2010.07.017 Yang, 2018, Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review, Biotechnol. Adv., 36, 182, 10.1016/j.biotechadv.2017.11.002 Liu, 2019, Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production, Crit. Rev. Biotechnol., 39, 258, 10.1080/07388551.2018.1554620 Zahrl, 2017, Systems biotechnology for protein production in Pichia pastoris, FEMS Yeast Res., 17, fox068, 10.1093/femsyr/fox068 Kumari, 2014, Novel strategy of using methyl esters as slow release methanol source during lipase expression by mut(+) Pichia pastoris X33, PLoS One, 9, 10, 10.1371/journal.pone.0104272 Liu, 2022, A programmable high-expression yeast platform responsive to user-defined signals, Sci. Adv., 8 Tyurin, 2015, Deletion of the FLD gene in methylotrophic yeasts Komagataella phaffii and Komagataella kurtzmanii results in enhanced induction of the AOX1 promoter in response to either methanol or formate, Microbiology, 84, 408, 10.1134/S0026261715030212 Singh, 2020, The Mut+ strain of Komagataella phaffii (Pichia pastoris) expresses PAOX1 5 and 10 times faster than Muts and Mut- strains: evidence that formaldehyde or/and formate are true inducers of PAOX1, Appl. Microbiol. Biotechnol., 104, 7801, 10.1007/s00253-020-10793-8 Cámara, 2019, Deregulation of methanol metabolism reverts transcriptional limitations of recombinant Pichia pastoris (Komagataella spp) with multiple expression cassettes under control of the AOX1 promoter, Biotechnol. Bioeng., 116, 1710, 10.1002/bit.26947 Vogl, 2013, Regulation of Pichia pastoris promoters and its consequences for protein production, New Biotechnol., 30, 385, 10.1016/j.nbt.2012.11.010 Ramakrishnan, 2020, Transcriptional control of gene expression in Pichia pastoris by manipulation of terminators, Appl. Microbiol. Biotechnol., 104, 7841, 10.1007/s00253-020-10785-8 Zhang, 2017, Energy charge as an indicator of pexophagy in Pichia pastoris, Front. Microbiol., 8, 963, 10.3389/fmicb.2017.00963 Green, 2012 D.R. Higgins, J.M. Cregg, Pichia Protocols, Springer, 1998. Kozera, 2013, Reference genes in real-time PCR, J. Appl. Genet., 54, 391, 10.1007/s13353-013-0173-x Inan, 2001, Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris, J. Biosci. Bioeng., 92, 585, 10.1016/S1389-1723(01)80321-2 Lan, 2018, Optimization of xylanase expression by recombinant Komagataella phaffii without methanol, Food Ferment. Ind., 44, 8 Nocon, 2016, Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris, Appl. Microbiol. Biotechnol., 100, 5955, 10.1007/s00253-016-7363-5 Mastropietro, 2021, Expression of proteins in Pichia pastoris, 53, 10.1016/bs.mie.2021.07.004 Jahic, 2002, Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein, Bioprocess Biosyst. Eng., 24, 385, 10.1007/s00449-001-0274-5 Canales, 2018, The growth of Pichia pastoris Mut(+) on methanol-glycerol mixtures fits to interactive dual-limited kinetics: model development and application to optimised fed-batch operation for heterologous protein production, Bioprocess Biosyst. Eng., 41, 1827, 10.1007/s00449-018-2005-1 Niu, 2013, A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut+/pAOX1-lacZ strain, Microb. Cell Factor., 12, 33, 10.1186/1475-2859-12-33 Lin-Cereghino, 2006, Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris, Mol. Cell. Biol., 26, 883, 10.1128/MCB.26.3.883-897.2006 Hou, 2020, Targeted editing of transcriptional activator MXR1 on the Pichia pastoris genome using CRISPR/Cas9 technology, Yeast, 37, 305, 10.1002/yea.3462 Ahmad, 2014, Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production, Appl. Microbiol. Biotechnol., 98, 5301, 10.1007/s00253-014-5732-5 Parua, 2012, Pichia pastoris 14-3-3 regulates transcriptional activity of the methanol inducible transcription factor Mxr1 by direct interaction, Mol. Microbiol., 85, 282, 10.1111/j.1365-2958.2012.08112.x Wang, 2016, PpNrg1 is a transcriptional repressor for glucose and glycerol repression of AOX1 promoter in methylotrophic yeast Pichia pastoris, Biotechnol. Lett., 38, 291, 10.1007/s10529-015-1972-4 Wang, 2017, Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris, Sci. Rep., 7, 41850, 10.1038/srep41850 Wang, 2016, Mit1 transcription factor mediates methanol signaling and regulates the alcohol oxidase 1 (AOX1) promoter in Pichia pastoris, J. Biol. Chem., 291, 6245, 10.1074/jbc.M115.692053 Shen, 2016, A novel methanol-free Pichia pastoris system for recombinant protein expression, Microb. Cell Factor., 15, 178, 10.1186/s12934-016-0578-4 Vogl, 2018, Methanol independent induction in Pichia pastoris by simple derepressed overexpression of single transcription factors, Biotechnol. Bioeng., 115, 1037, 10.1002/bit.26529