Heterologous expression, purification, and proteomic characterization of a 37 kDa pupal gut serine protease from Bombyx mori in Escherichia coli
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akbar SM, Sharma HC (2017) Alkaline serine proteases from Helicoverpa armigera: potential candidates for industrial applications. Arch Insect Biochem Physiol. https://doi.org/10.1002/arch.21367
Anwar A, Saleemuddin M (2000) Alkaline protease from Spilosoma obliqua: potential applications in bio-formulations. Biotechnol Appl Biochem 31:85. https://doi.org/10.1042/ba19990078
Arunprasanna V, Kannan M, Anbalagan S, Krishnan M (2017) Comparative proteomic analysis of larva and adult heads of silkworm, Bombyx mori (Lepidoptera: Bombycidae). J Entomology 14:1–12. https://doi.org/10.3923/je.2017.1.12
Bakli M, Pascalau R, Smuleac L (2020) Rare codon analysis in rickettsia affecting recombinant protein expression in Escherichia coli. Adv Res Life Sci 4:30–35. https://doi.org/10.2478/arls-2020-0015
Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T (2021) Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.630551
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254
Dinglasan RR, Devenport M, Florens L, Johnson JR, McHugh CA, Donnelly-Doman M, Carucci DJ, Yates JR, Jacobs-Lorena M (2009) The Anopheles gambiae adult midgut peritrophic matrix proteome. Insect Biochem Mol Biol 39:125–134. https://doi.org/10.1016/j.ibmb.2008.10.010
Duckert P, Brunak S, Blom N (2004) Prediction of proprotein convertase cleavage sites. Protein Eng Des Sel 17:107–112. https://doi.org/10.1093/protein/gzh013
Hamed MBB, Attias J (1987) Isolation and partial characterization of two alkaline proteases of the greater wax moth Galleria mellonella (L.). Insect Biochem 17:653–658. https://doi.org/10.1016/0020-1790(87)90032-1
Hivrale VK, Chougule NP, Chhabda PJ, Giri AP, Kachole MS (2005) Unraveling biochemical properties of cockroach (Periplaneta americana) proteinases with a gel X-ray film contact print method. Comp Biochem Physiol B Biochem Mol Biol 141:261–266. https://doi.org/10.1016/j.cbpc.2005.02.015
Hou Y, Yang L, Xu S, Zhang Y, Cheng Y, Li Y, Gong J, Xia Q (2021) Trypsin-type serine protease p37k hydrolyzes CPAP3-type cuticle proteins in the molting fluid of the silkworm Bombyx mori. Insect Biochem Mol Biol. https://doi.org/10.1016/j.ibmb.2021.103610
Kaji K, Tomino S, Asano T (2009) A serine protease in the midgut of the silkworm, Bombyx mori: protein sequencing, identification of cDNA, demonstration of its synthesis as zymogen form and activation during midgut remodeling. Insect Biochem Mol Biol 39:207–217. https://doi.org/10.1016/j.ibmb.2008.12.001
Kannan M, Suryaaathmanathan V, Saravanakumar M, Jaleel A, Romanelli D, Tettamanti G, Krishnan M (2016) Proteomic analysis of the silkworm midgut during larval–pupal transition. ISJ 13:191–204
Kannan M, Ramya T, Anbalagan S, Suriya J, Krishnan M (2017) Proteomic analysis of pupal gut serine protease of Silkworm, Bombyx mori: partial purification and biochemical characterization. Biocatal Agric Biotechnol 12:159–165. https://doi.org/10.1016/j.bcab.2017.10.001
Kannan M, Mubarakali D, Thiyonila B, Krishnan M, Padmanaban B, Shantkriti S (2019) Insect gut as a bioresource for potential enzymes—an unexploited area for industrial biotechnology. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2019.01.048
Khan AR, James MNG (1998) Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci 7:815–836
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
Letunic I, Doerks T, Bork P (2015) SMART: Recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260. https://doi.org/10.1093/nar/gku949
Lv D, Liu X, Dong Y, Yan Z, Zhang X, Ren J, Wang P, Li Y (2022) Larval midgut protease activity of Illiberis pruni (Lepidoptera: Zygaenidae) feeding on multiple characteristic hosts. Phytoparasitica 50:1033–1042. https://doi.org/10.1007/s12600-022-01019-w
Mótyán J, Tóth F, Tőzsér J (2013) Research applications of proteolytic enzymes in molecular biology. Biomolecules 3:923–942. https://doi.org/10.3390/biom3040923
Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233
Patankar AG, Giri AP, Harsulkar AM, Sainani MN, Deshpande VV, Ranjekar PK, Gupta VS (2001) Complexity in specificities and expression of Helicoverpa armigera gut proteinases explains polyphagous nature of the insect pest. Insect Biochem Mol Biol 31:453–464
Petersen TN, Brunak S, Von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786
Petrescu AJ, Milac AL, Petrescu SM, Dwek RA, Wormald MR (2004) Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14:103–114. https://doi.org/10.1093/glycob/cwh008
Reddy Patakottu BK, Vedire VR, Reddy CR (2023) Robust production of active Ulp1 (SUMO protease) from inclusion bodies. Protein Expr Purif 211:106328. https://doi.org/10.1016/j.pep.2023.106328
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
Sanatan PT, Lomate PR, Giri AP, Hivrale VK (2013) Characterization of a chemostable serine alkaline protease from Periplaneta americana. BMC Biochem. https://doi.org/10.1186/1471-2091-14-32
Srinivasan A, Giri AP, Gupta VS (2006) Structural and functional diversities in lepidopteran serine proteases. Cell Mol Biol Lett 11:132–154. https://doi.org/10.2478/s11658-006-0012-8
Srivastava V, Mishra S, Chaudhuri TK (2019) Enhanced production of recombinant serratiopeptidase in Escherichia coli and its characterization as a potential biosimilar to native biotherapeutic counterpart. Microb Cell Fact. https://doi.org/10.1186/s12934-019-1267-x
Venancio TM, Cristofoletti PT, Ferreira C, Verjovski-Almeida S, Terra WR (2009) The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Mol Biol 18:33–44. https://doi.org/10.1111/j.1365-2583.2008.00845.x