Heterologous expression of Chlorophytum borivilianum Squalene epoxidase in tobacco modulates stigmasterol production and alters vegetative and reproductive growth

Nishant Kaushal1, Deepika Verma1, Anshu Alok1, Ashutosh Pandey2, Kashmir Singh1
1Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh 160014, India
2National Institute of Plant Genome Research, New Delhi, 110067, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aboobucker SI, Suza WP (2019) Why do plants convert sitosterol to stigmasterol? Front Plant Sci 10:354

Bach TJ (2016) Secondary metabolism: high cholesterol in tomato. Nat Plants 3:1–2

Bhat WW, Lattoo SK, Razdan S et al (2012) Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene 499:25–36

Bonhomme V, Laurain-Mattar D, Fliniaux MA (2000) Effects of the rol C gene on hairy root: induction development and tropane alkaloid production by Atropa belladonna. J Nat Prod 63:1249–1252

Bordia PC, Joshi A, Simlot MM (1995) Safed musli In: K.L. Chadha and R. Gupta ed. Advances in Horticulture Vol. 11 - Medicinal and Aromatic Plants. (Malhotra Publishing House, New Delhi) pp- 429–449

Burger C, Rondet S, Benveniste P, Schaller H (2003) Virus-induced silencing of sterol biosynthetic genes: identification of a Nicotiana tabacum L. obtusifoliol-14α-demethylase (CYP51) by genetic manipulation of the sterol biosynthetic pathway in Nicotiana benthamiana L. J Exp Bot 54:1675–1683

Busquets A, Keim V, Closa M et al (2008) Arabidopsis thaliana contains a single gene encoding squalene synthase. Plant Mol Biol 67:25–36

Chang YS, Seo E-K, Gyllenhaal C, Block KI (2003) Panax ginseng: a role in cancer therapy? Integr Cancer Ther 2:13–33

Dhar N, Razdan S, Rana S et al (2015) A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera (L.) Dunal: prospects and perspectives for pathway engineering. Front Plant Sci 6:1031

Gas-Pascual E, Berna A, Bach TJ, Schaller H (2014) Plant oxidosqualene metabolism: cycloartenol synthase–dependent sterol biosynthesis in Nicotiana benthamiana. PLoS ONE 9:e109156

Geisler K, Hughes RK, Sainsbury F et al (2013) Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proc Natl Acad Sci 110:E3360–E3367

Ghawana S, Paul A, Kumar H et al (2011) An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res Notes 4:85

Guo H, Li R, Liu S et al (2016) Molecular characterization, expression, and regulation of Gynostemma pentaphyllum squalene epoxidase gene 1. Plant Physiol Biochem 109:230–239

Gwak YS, Han JY, Adhikari PB et al (2017) Heterologous production of a ginsenoside saponin (compound K) and its precursors in transgenic tobacco impairs the vegetative and reproductive growth. Planta 245:1105–1119

Han J-Y, In J-G, Kwon Y-S, Choi Y-E (2010) Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry 71:36–46

Han J-Y, Wang H-Y, Choi Y-E (2014) Production of dammarenediol-II triterpene in a cell suspension culture of transgenic tobacco. Plant Cell Rep 33:225–233

Han JY, Jo H-J, Choi YE (2020) Overexpression of the squalene epoxidase gene (PgSE1) resulted in enhanced production of ginsenosides and phytosterols in transgenic ginseng. Plant Biotechnol Rep 14:673–682

Harker M, Hellyer A, Clayton JC et al (2003) Co-ordinate regulation of sterol biosynthesis enzyme activity during accumulation of sterols in developing rape and tobacco seed. Planta 216:707–715

Hayashi H, Huang P, Inoue K (2003) Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra. Plant Cell Physiol 44:404–411

Hayward A, Padmanabhan M, Dinesh-Kumar SP (2011) Virus-induced gene silencing in nicotiana benthamiana and other plant species. Methods Mol Biol 678:55–63

Hong S, Peebles CAM, Shanks JV et al (2006) Terpenoid indole alkaloid production by Catharanthus roseus hairy roots induced by Agrobacterium tumefaciens harboring rol ABC genes. Biotechnol Bioeng 93:386–390

Jo H-J, Han JY, Hwang H-S, Choi YE (2017) β-Amyrin synthase (EsBAS) and β-amyrin 28-oxidase (CYP716A244) in oleanane-type triterpene saponin biosynthesis in Eleutherococcus senticosus. Phytochemistry 135:53–63

Kalra S, Kumar S, Lakhanpal N et al (2013a) Characterization of squalene synthase gene from Chlorophytum borivilianum (Sant. and Fernand.). Mol Biotechnol 54:944–953

Kalra S, Puniya BL, Kulshreshtha D et al (2013b) De novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant Chlorophytum borivilianum. PLoS ONE 8:e83336

Kaushik N (2005) Saponins of Chlorophytum species. Phytochem Rev 4:191–196

Kemen AC, Honkanen S, Melton RE et al (2014) Investigation of triterpene synthesis and regulation in oats reveals a role for β-amyrin in determining root epidermal cell patterning. Proc Natl Acad Sci 111:8679–8684

Khakimov B, Kuzina V, Erthmann PØ et al (2015) Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana. Plant J 84:478–490

Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43–W46

Kumar R, Singh AK, Gupta A et al (2019) Therapeutic potential of Aloe vera—a miracle gift of nature. Phytomedicine 60:152996

Lee M-H, Jeong J-H, Seo J-W et al (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984

Liu Y, Zhao Z, Xue Z et al (2016) An intronless β-amyrin synthase gene is more efficient in oleanolic acid accumulation than its paralog in Gentiana straminea. Sci Rep 6:1–13

Liu Y, Zhou J, Hu T et al (2020) Identification and functional characterization of squalene epoxidases and oxidosqualene cyclases from Tripterygium wilfordii. Plant Cell Rep 39:409–418

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

Mahadevan S, Park Y (2008) Multifaceted therapeutic benefits of Ginkgo biloba L.: chemistry, efficacy, safety, and uses. J Food Sci 73:R14–R19

Moses T, Papadopoulou KK, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49:439–462

Okwor OH, Ogugua VN, Okagu IU (2020) Therapeutic evaluation of anti-trypanosoma activity of ethanol extracts of Jatropha curcas roots in comparison with diminazene aceturate in Trypanosoma brucei brucei–parasitized rats. Comp Clin Path 29:1189–1198

Pathi KM, Tula S, Tuteja N (2013) High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium-mediated genetic transformation of tobacco. Plant Signal Behav 8:e24354

Rasbery JM, Shan H, LeClair RJ et al (2007) Arabidopsis thaliana squalene epoxidase 1 is essential for root and seed development. J Biol Chem 282:17002–17013

Razdan S, Bhat WW, Rana S et al (2013) Molecular characterization and promoter analysis of squalene epoxidase gene from Withania somnifera (L.) Dunal. Mol Biol Rep 40:905–916

Rehman S, Khanum A (2011) Isolation and characterization of peptide (s) from Pisum sativum having antimicrobial activity against various bacteria. Pak J Bot 43:2971–2978

Roy S, Pawar S, Chowdhary A (2016) Evaluation of in vitro cytotoxic and antioxidant activity of Datura metel Linn. and Cynodon dactylon Linn. extracts. Pharmacognosy Res 8:123

Schaller H (2003) The role of sterols in plant growth and development. Prog Lipid Res 42:163–175

Schmid M, Davison TS, Henz SR et al (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

Schrick K, Cordova C, Li G et al (2011) A dynamic role for sterols in embryogenesis of Pisum sativum. Phytochemistry 72:465–475

Seo J-W, Jeong J-H, Shin C-G et al (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66:869–877

Sharma A, Rana S, Rather GA et al (2020) Characterization and overexpression of sterol Δ22-desaturase, a key enzyme modulates the biosyntheses of stigmasterol and withanolides in Withania somnifera (L.) Dunal. Plant Sci 301:110642

Singh R, Geetanjali (2016) Asparagus racemosus: a review on its phytochemical and therapeutic potential. Nat Prod Res 30:1896–1908

Singh K, Raizada J, Bhardwaj P et al (2004) 26S rRNA-based internal control gene primer pair for reverse transcription-polymerase chain reaction-based quantitative expression studies in diverse plant species. Anal Biochem 335:330–333

Singh AK, Dwivedi V, Rai A et al (2015) Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance. Plant Biotechnol J 13:1287–1299

Spena A, Schmülling T, Koncz C, Schell JS (1987) Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899

Suza WP, Chappell J (2016) Spatial and temporal regulation of sterol biosynthesis in Nicotiana benthamiana. Physiol Plant 157:120–134

Unland K, Pütter KM, Vorwerk K et al (2018) Functional characterization of squalene synthase and squalene epoxidase in Taraxacum koksaghyz. Plant Direct 2:e00063

Wentzinger LF, Bach TJ, Hartmann M-A (2002) Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Physiol 130:334–346

Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343:43–53.

Zhang X, Wu J, Dou Y et al (2012) Asiatic acid protects primary neurons against C2-ceramide-induced apoptosis. Eur J Pharmacol 679:51–59