Heterointerface and grain boundary energies, and their influence on microstructure in multiphase ceramics
Tài liệu tham khảo
Rohrer, 2011, Grain boundary energy anisotropy: a review, J. Mater. Sci., 46, 5881, 10.1007/s10853-011-5677-3
Mullins, 1956, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys., 27, 900, 10.1063/1.1722511
Foiles, 2010, Temperature dependence of grain boundary free energy and elastic constants, Scr. Mater., 62, 231, 10.1016/j.scriptamat.2009.11.003
Gupta, 2003, Diffusion, solute segregations and interfacial energies in some material: an overview, Interface Sci., 11, 7, 10.1023/A:1021570503733
Kelly, 2017, The temperature dependence of the relative grain-boundary energy of yttria-doped alumina, J. Am. Ceram. Soc., 100, 783, 10.1111/jace.14488
Atkinson, 1981, The diffusion of 63Ni along grain boundaries in nickel oxide, Philos. Mag. A, 43, 979, 10.1080/01418618108239506
Rheinheimer, 2015, The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution, Acta Mater., 82, 32, 10.1016/j.actamat.2014.08.065
Rohrer, 2016, The role of grain boundary energy in grain boundary complexion transitions, Curr. Opin. Solid State Mater. Sci., 20, 231, 10.1016/j.cossms.2016.03.001
Sato, 2006, Role of Pr segregation in acceptor-state formation at ZnO grain boundaries, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.106802
Feng, 2016, Atomic structures and oxygen dynamics of CeO2 grain boundaries, Sci. Rep.
Dillon, 2010, The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions, J. Am. Ceram. Soc., 93, 1796, 10.1111/j.1551-2916.2010.03642.x
Bowman, 2020, Linking macroscopic and nanoscopic ionic conductivity: a semiempirical framework for characterizing grain boundary conductivity in polycrystalline ceramics, ACS Appl. Mater. Interfaces, 12, 507, 10.1021/acsami.9b15933
Bowman, 2015, Electrical conductivity and grain boundary composition of Gd-doped and Gd/Pr co-doped ceria, Solid State Ion., 272, 9, 10.1016/j.ssi.2014.12.006
Saylor, 1999, Measuring the influence of grain-boundary misorientation on thermal groove geometry in ceramic polycrystals, J. Am. Ceram. Soc., 82, 1529, 10.1111/j.1151-2916.1999.tb01951.x
Saylor, 2003, The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters, Acta Mater., 51, 3675, 10.1016/S1359-6454(03)00182-4
Shibata, 2004, Structure, energy and solute segregation behaviour of [110] symmetric tilt grain boundaries in yttria-stabilized cubic zirconia, Philos. Mag., 84, 2381, 10.1080/14786430410001693463
Yoshida, 2004, High-temperature grain boundary sliding behavior and grain boundary energy in cubic zirconia bicrystals, Acta Mater., 52, 2349, 10.1016/j.actamat.2004.01.026
Tsoga, 1996, Surface and grain-boundary energies in yttria-stabilized zirconia (YSZ-8 mol%), J. Mater. Sci., 31, 5409, 10.1007/BF01159310
Bojarski, 2012, Changes in the grain boundary character and energy distributions resulting from a complexion transition in Ca-doped yttria, Metall. Mater. Trans. A, 43, 3532, 10.1007/s11661-012-1172-y
Vahidi, 2021, A review of grain boundary and heterointerface characterization in polycrystalline oxides by (scanning) transmission electron microscopy, Crystals, 11, 878, 10.3390/cryst11080878
Syed, 2020, Correlations of grain boundary segregation to sintering techniques in a three-phase ceramic, Materialia, 10.1016/j.mtla.2020.100890
Dillon, 2010, Influence of interface energies on solute partitioning mechanisms in doped aluminas, Acta Mater., 58, 5097, 10.1016/j.actamat.2010.05.045
Haremski, 2021, A thermal grooving study of relative grain boundary energies of nickel in polycrystalline Ni and in a Ni/YSZ anode measured by atomic force microscopy, Acta Mater., 214, 10.1016/j.actamat.2021.116936
Munoz, 2004, The monitoring of grain-boundary grooves in alumina, Philos. Mag. Lett., 84, 21, 10.1080/09500830310001614487
Mullins, 1957, Theory of thermal grooving, J. Appl. Phys., 28, 333, 10.1063/1.1722742
Robertson, 1971, Grain-boundary grooving by surface diffusion for finite surface slopes, J. Appl. Phys., 42, 463, 10.1063/1.1659625
Handwerker, 1990, Dihedral angles in magnesia and alumina: distributions from surface thermal grooves, J. Am. Ceram. Soc., 73, 1371, 10.1111/j.1151-2916.1990.tb05207.x
Costa, 2010, Calorimetric measurement of surface and interface enthalpies of Yttria-Stabilized Zirconia (YSZ), Chem. Mater., 22, 2937, 10.1021/cm100255u
McHale, 1997, Surface energies and thermodynamic phase stability in nanocrystalline aluminas, Science, 277, 788, 10.1126/science.277.5327.788
Hasan, 2016, Improving the thermodynamic stability of aluminate spinel nanoparticles with rare earths, Chem. Mater., 28, 5163, 10.1021/acs.chemmater.6b02577
J. Teevan The Effect of Titanium Dioxide Doping On Th Grain Growth and Grain-Boundary Energy of Magnesium Aluminate Spinel. (Lehigh University).
Heffelfinger, 1995, On the faceting of ceramic surfaces, Surf. Sci., 343, L1161, 10.1016/0039-6028(95)00896-9
Ratzker, 2016, Creep of polycrystalline magnesium aluminate spinel studied by an SPS apparatus, Materials, 9, 493, 10.3390/ma9060493
Simpson, 1990, Faceting behavior of alumina in the presence of a glass, J. Am. Ceram. Soc., 73, 2391, 10.1111/j.1151-2916.1990.tb07603.x
Mohan, 2016, Effect of ZrO2 addition on MgAl2O4 spinel from commercial grade oxide reactants, Ceram. Int., 42, 10355, 10.1016/j.ceramint.2016.03.167
Tomsia, 2012
Hallstedt, 1992, Thermodynamic assessment of the system MgO–Al2O3, J. Am. Ceram. Soc., 75, 1497, 10.1111/j.1151-2916.1992.tb04216.x
Feng, 2017, Direct observation of oxygen vacancy distribution across yttria-stabilized zirconia grain boundaries, ACS Nano, 11, 11376, 10.1021/acsnano.7b05943
Matsui, 2008, Grain-boundary structure and microstructure development mechanism in 2–8mol% yttria-stabilized zirconia polycrystals, Acta Mater., 56, 1315, 10.1016/j.actamat.2007.11.026
Sánchez-Santolino, 2018, Localization of yttrium segregation within YSZ grain boundary dislocation cores, Phys. Status Solidi A, 215, 10.1002/pssa.201800349
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, 32, 751, 10.1107/S0567739476001551
