Heterogeneously catalyzed lignin depolymerization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Vassilev SV, Vassileva CG, Vassilev VS (2015) Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview. Fuel 158:330–350
Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC
White CA, Kennedy JF (1985) Recent advances in lignin biodegradation research edited by T. Higuchi, H.-M. Chang and T. K. Kirk, Uni Publishers Co., Japan, 1983. pp. xiv + 279, price $30.00. Br Polym J 17(1):90
Connors WJ et al (1980) Thermal degradation of kraft lignin in tetralin. Holzforschung Int J Biol Chem Phys Technol Wood 34:29–37
Wolfson A et al (2009) Glycerol as solvent and hydrogen donor in transfer hydrogenation–dehydrogenation reactions. Tetrahedron Lett 50(43):5951–5953
Johnstone RAW, Wilby AH, Entwistle ID (1985) Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds. Chem Rev 85(2):129–170
Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41(24):8075–8098
Kim KH et al (2014) Hydrogen-donor-assisted solvent liquefaction of lignin to short-chain alkylphenols using a micro reactor/gas chromatography system. Energy Fuels 28(10):6429–6437
Evans RJ, Milne TA, Soltys MN (1986) Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels: III. Primary pyrolysis of lignin. J Anal Appl Pyrol 9(3):207–236
Zakzeski J et al (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599
Parthasarathi R et al (2011) Theoretical study of the remarkably diverse linkages in lignin. J Phys Chem Lett 2(20):2660–2666
Younker JM, Beste A, Buchanan AC (2011) Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds. ChemPhysChem 12(18):3556–3565
Wang X, Rinaldi R (2012) Solvent effects on the hydrogenolysis of diphenyl ether with raney nickel and their implications for the conversion of lignin. ChemSusChem 5(8):1455–1466
Lange H, Decina S, Crestini C (2013) Oxidative upgrade of lignin—recent routes reviewed. Eur Polym J 49(6):1151–1173
Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crops Prod 20(2):131–141
Kleinert N (1971) Organosolv pulping and recovery process. Patent US3585104
Sturgeon MR et al (2014) Lignin depolymerisation by nickel supported layered-double hydroxide catalysts. Green Chem 16(2):824–835
Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34(1):29–41
Ma R, Xu Y, Zhang X (2015) Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem 8(1):24–51
Behling R, Valange S, Chatel G (2016) Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem 18(7):1839–1854
Saidi M et al (2014) Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ Sci 7(1):103–129
Shu R et al (2016) Investigation on the structural effect of lignin during the hydrogenolysis process. Bioresour Technol 200:14–22
Song Q, Wang F, Xu J (2012) Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chem Commun 48(56):7019–7021
He JY, Zhao C, Lercher JA (2012) Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J Am Chem Soc 134(51):20768–20775
Kim J-Y et al (2015) Conversion of lignin to phenol-rich oil fraction under supercritical alcohols in the presence of metal catalysts. Energy Fuels 29(8):5154–5163
Toledano A et al (2014) Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: catalyst screening. Appl Catal B 145:43–55
Pineda A et al (2011) A dry milling approach for the synthesis of highly active nanoparticles supported on porous materials. ChemSusChem 4(11):1561–1565
Toledano A et al (2013) Heterogeneously catalysed mild hydrogenolytic depolymerisation of lignin under microwave irradiation with hydrogen-donating solvents. ChemCatChem 5(4):977–985
Jiang Y et al (2015) Depolymerization of cellulolytic enzyme lignin for the production of monomeric phenols over raney ni and acidic zeolite catalysts. Energy Fuels 29(3):1662–1668
Deepa AK, Dhepe PL (2014) Solid acid catalyzed depolymerization of lignin into value added aromatic monomers. RSC Adv 4(25):12625–12629
Zhang JG et al (2014) A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. Acs Catalysis 4(5):1574–1583
Zhang JG et al (2014) Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chem 16(5):2432–2437
Grilc M, Likozar B, Levec J (2014) Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts. Appl Catal B 150–151:275–287
Konnerth H et al (2015) Base promoted hydrogenolysis of lignin model compounds and organosolv lignin over metal catalysts in water. Chem Eng Sci 123:155–163
Ma R et al (2014) Catalytic ethanolysis of kraft lignin into high-value small-molecular chemicals over a nanostructured alpha-molybdenum carbide catalyst. Angew Chem Int Ed 53(28):7310–7315
Ma X et al (2015) Alumina supported molybdenum catalyst for lignin valorization: effect of reduction temperature. Bioresour Technol 192:17–22
Huang X et al (2015) Role of Cu–Mg–Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol. ACS Catal 5(12):7359–7370
Barta K et al (2010) Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol. Green Chem 12(9):1640–1647
Barta K et al (2014) Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides. Green Chem 16(1):191–196
Klamrassamee T et al (2015) Effects of mesostructured silica catalysts on the depolymerization of organosolv lignin fractionated from woody eucalyptus. Bioresour Technol 180:222–229
Nowakowski DJ et al (2010) Lignin fast pyrolysis: results from an international collaboration. J Anal Appl Pyrol 88(1):53–72
Li X et al (2012) Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Front Environ Sci Eng 6(3):295–303
Azeez AM et al (2011) Effects of zeolites on volatile products of beech wood using analytical pyrolysis. J Anal Appl Pyrol 91(2):296–302
Jackson MA, Compton DL, Boateng AA (2009) Screening heterogeneous catalysts for the pyrolysis of lignin. J Anal Appl Pyrol 85(1–2):226–230
Mullen CA, Boateng AA (2010) Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process Technol 91(11):1446–1458
Agrawal S, Singh B, Sharma YC (2012) Exoskeleton of a mollusk (Pila globosa) as a heterogeneous catalyst for synthesis of biodiesel using used frying oil. Ind Eng Chem Res 51(37):11875–11880
Idem RO, Katikaneni SPR, Bakhshi NN (1997) Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution. Fuel Process Technol 51(1–2):101–125
Ma Z, van Bokhoven JA (2012) Deactivation and regeneration of H-USY zeolite during lignin catalytic fast pyrolysis. ChemCatChem 4(12):2036–2044
Ma Z, Troussard E, van Bokhoven JA (2012) Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Appl Catal A 423–424:130–136
Ma Z, Custodis V, van Bokhoven JA (2014) Selective deoxygenation of lignin during catalytic fast pyrolysis. Catal Sci Technol 4(3):766–772
Roberts V et al (2010) Influence of alkali carbonates on benzyl phenyl ether cleavage pathways in superheated water. Appl Catal B 95(1–2):71–77
Miller JE et al (1999) Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents. Fuel 78(11):1363–1366
Toledano A, Serrano L, Labidi JJ (2012) Organosolv lignin depolymerization with different base catalysts. Chem Technol Biotechnol 87(11):1593
Xu C et al (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels Chem. Soc Rev 43:7485
Erdocia X et al (2014) Base catalyzed depolymerization of lignin: influence of organosolv lignin nature. Biomass Bioenergy 66:379–386
Chen HZ et al (2015) Depolymerization of renewable resources-lignin by sodium hydroxide as a catalyst and its applications to epoxy resin. J Appl Polym Sci 132(26):10
Toledano A, Serrano L, Labidi J (2014) Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel 116:617
Montero JM et al (2009) Structure-sensitive biodiesel synthesis over MgO nanocrystals. Green Chem 11(2):265–268
Long J et al (2014) An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresour Technol 154:10–17
Dabral S et al (2015) Base-catalysed cleavage of lignin [small beta]-O-4 model compounds in dimethyl carbonate. Green Chem 17(11):4908–4912
Karagöz S et al (2004) Effect of Rb and Cs carbonates for production of phenols from liquefaction of wood biomass. Fuel 83(17–18):2293–2299
Sergeev AG, Webb JD, Hartwig JF (2012) A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation. J Am Chem Soc 134(50):20226–20229
Woodford JJ et al (2012) Better by design: nanoengineered macroporous hydrotalcites for enhanced catalytic biodiesel production. Energy Environ Sci 5(3):6145–6150
Creasey JJ et al (2015) Facile route to conformal hydrotalcite coatings over complex architectures: a hierarchically ordered nanoporous base catalyst for FAME production. Green Chem 17(4):2398–2405
Creasey JJ et al (2014) Alkali- and nitrate-free synthesis of highly active Mg-Al hydrotalcite-coated alumina for FAME production. Catal Sci Technol 4(3):861–870
Kruger JS et al (2016) Lignin depolymerization with nitrate-intercalated hydrotalcite catalysts. ACS Catal 6(2):1316–1328
Zhao Y et al (2013) Depolymerization of lignin by catalytic oxidation with aqueous polyoxometalates. Appl Catal A 467:504–508
Ragauskas AJ et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 34:1246843
Son S, Toste FD (2010) Non-oxidative vanadium-catalyzed c–o bond cleavage: application to degradation of lignin model compounds. Angew Chem 122(22):3879–3882
Korpi H et al (2006) Copper-2,2′-bipyridines: catalytic performance and structures in aqueous alkaline solutions. Appl Catal A 302(2):250–256
Ammam M (2013) Polyoxometalates: formation, structures, principal properties, main deposition methods and application in sensing. J Mater Chem A 1(21):6291–6312
Gaspar AR et al (2007) Alternatives for lignocellulosic pulp delignification using polyoxometalates and oxygen: a review. Green Chem 9(7):717–730
Voitl T, Rudolf von Rohr P (2008) Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols. ChemSusChem 1(8–9):763–769
Kamwilaisak K, Wright PC (2012) Investigating laccase and titanium dioxide for lignin degradation. Energy Fuels 26(4):2400–2406
Noyori R, Aoki M, Sato K (2003) Green oxidation with aqueous hydrogen peroxide. Chem Commun 16:1977–1986
Valenzuela R et al (2008) Copper catechol-driven Fenton reactions and their potential role in wood degradation. Int Biodeterior Biodegrad 61(4):345–350
Rahimi A et al (2014) Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515(7526):249–252
Rahimi A et al (2013) Chemoselective metal-free aerobic alcohol oxidation in lignin. J Am Chem Soc 135(17):6415–6418
Deng W et al (2015) Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles. Green Chem 17(11):5009–5018
Guo Z et al (2014) Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem Soc Rev 43(10):3480–3524
Vinod CP, Wilson K, Lee AF (2011) Recent advances in the heterogeneously catalysed aerobic selective oxidation of alcohols. J Chem Technol Biotechnol 86(2):161–171
Hackett SFJ et al (2007) High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew Chem 119(45):8747–8750
Lee AF et al (2011) Reaction-driven surface restructuring and selectivity control in allylic alcohol catalytic aerobic oxidation over Pd. J Am Chem Soc 133(15):5724–5727
Lee AF (2013) Mechanistic studies of alcohol selective oxidation. In: Wilson K, Lee AF (eds) Heterogeneous catalysts for clean technology: spectroscopy, design, and monitoring. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 11–38
Mottweiler J et al (2015) Copper- and vanadium-catalyzed oxidative cleavage of lignin using dioxygen. ChemSusChem 8(12):2106–2113
Lee SH et al (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376
Eta V, Mikkola J-P (2016) Deconstruction of Nordic hardwood in switchable ionic liquids and acylation of the dissolved cellulose. Carbohydr Polym 136:459–465
Ayoub A et al (2013) Development of an acetylation reaction of switchgrass hemicellulose in ionic liquid without catalyst. Ind Crops Prod 44:306–314
Stärk K et al (2010) Oxidative depolymerization of lignin in ionic liquids. ChemSusChem 3(6):719–723
Cox BJ, Ekerdt JG (2012) Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresour Technol 118:584–588
Yinghuai Z, Yuanting KT, Hosmane NS (2013) Applications of ionic liquids in lignin chemistry. In: Kadokawa JI (ed) Ion Ionic Liquids - New Aspects for the Future, In Tech. doi: 10.5772/51161
Zakzeski J, Jongerius AL, Weckhuysen BM (2010) Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem 12(7):1225–1236
Ralph JP, Catcheside DEA (1998) Involvement of manganese peroxidase in the transformation of macromolecules from low-rank coal by Phanerochaete chrysosporium. Appl Microbiol Biotechnol 49(6):778–784
Shin KS, Lee YJ (1999) Depolymerisation of lignosulfonate by peroxidase of the white-rot basidiomycete, Pleurotus ostreatus. Biotechnol Lett 21(7):585–588
Crestini C, Melone F, Saladino R (2011) Novel multienzyme oxidative biocatalyst for lignin bioprocessing. Bioorg Med Chem 19(16):5071–5078
Berglund GI et al (2002) The catalytic pathway of horseradish peroxidase at high resolution. Nature 417(6887):463–468