Heterogeneous Wettability Surfaces: Principle, Construction, and Applications

SMALL STRUCTURES - Tập 1 Số 2 - 2020
Huizeng Li1, An Li1,2, Zhipeng Zhao1,2, Mingzhu Li1, Yanlin Song1,2
1Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
2School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China

Tóm tắt

A functional substrate with heterogeneous wettability elaborately integrates the water loving and repellent properties onto an individual surface. Compared with homogeneous surfaces, nonuniformity in wettability endows a heterogeneous surface with a more remarkable capability for manipulation of the solid–liquid–gas interactions, which contributes to the progress and innovation in various applications, such as device fabrication, biological screening, and sample analysis. Recently, the development in microfabrication techniques has greatly promoted the versatility and diversity in the design and fabrication of substrates with high‐precision and high‐resolution heterogeneous wettability. In this review, the general principle of liquid manipulation using heterogeneous wettability surfaces is discussed. Then, the construction methodology of substrates with heterogeneous wettability surfaces is outlined in the order of chemical modification and physical engineering. Typical applications focused on optic/electronic device fabrication and biosensing/detection are summarized. Finally, current challenges and research prospects to enhance the practicality and universality of heterogeneous wettability substrates are also proposed.

Từ khóa


Tài liệu tham khảo

10.1002/smll.201804006

10.1039/C7MH01138E

10.1126/sciadv.1600148

10.1021/nn505716b

10.1016/j.ijmultiphaseflow.2014.02.006

10.1039/C4CC03878A

10.1002/smll.201901822

10.1002/adma.201305416

10.1002/adma.201303278

10.1002/adom.201300369

10.1038/35102108

10.1002/anie.202003839

10.1021/la703821h

10.1021/acsami.8b21879

10.1002/adma.201204120

10.1021/acsami.6b02032

10.1016/j.joule.2018.08.014

10.1038/ncomms9599

10.1002/adhm.201600518

10.1002/anie.201102545

10.3390/mi7030041

10.1063/1.4751980

10.1038/srep19131

10.1021/la400801s

10.1126/sciadv.1500613

10.1002/aenm.201900838

Feng W., 2018, Adv. Mater., 1706111, 10.1002/adma.201706111

10.1039/c3cs35501b

10.1039/C8CS00915E

10.1098/rstl.1805.0005

10.1021/ie50320a024

10.1039/tf9444000546

10.1039/df9480300011

10.1021/am509177s

10.1002/adfm.201800448

10.1002/adma.201400262

10.1002/adma.201502982

10.1002/adma.201506151

10.1002/adfm.201902494

10.1039/C7RA05654K

10.1039/C6RA02170K

10.1002/adma.201301876

10.1002/anie.201502954

10.1002/admi.201400269

10.1007/s10570-017-1593-2

10.1021/nl5041836

Guo F., 2018, Comp. Commun., 10, 151

10.1039/C4TA05862C

10.1038/srep07029

10.1002/anie.201400686

10.1021/la3010932

10.1021/acsami.9b07433

10.1039/C4AN01626B

10.1016/j.talanta.2018.10.104

10.1021/acsami.8b01133

10.1038/srep36735

10.1039/C5CP01530H

10.1007/s00170-019-03630-4

10.1002/adma.201800103

10.1002/adma.201704912

10.1002/adma.201506215

10.1039/c3cc45817b

10.1038/am.2017.122

10.1186/1556-276X-6-333

10.1002/adfm.201904535

10.1038/nphys3643

10.1039/C5SM02153G

10.1021/acsami.8b13908

Hou K., 2019, Adv. Mater. Interfaces, 1901683

10.1039/C3TA14711H

10.1126/science.aan2958

10.1038/ncomms8149

10.1038/s41467-019-08834-6

10.1002/admt.201800168

10.1021/acsnano.9b05715

10.1038/am.2017.123

10.1002/pssa.201900511

10.1002/adfm.201470159

10.1021/acsnano.6b06896

10.1002/anie.201302311

10.1039/C8NR07348A

10.1002/smll.201403640