Heterogeneous Nucleation of Ice in Dispersed Phase of Water-in-Decane Emulsion

Colloid Journal - Tập 81 - Trang 199-203 - 2019
V. A. Shestakov1, V. I. Kosyakov1, A. Yu. Manakov1,2, A. S. Stoporev1,2, E. V. Grachev1
1Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia

Tóm tắt

A model developed for the description of experimental data on heterogeneous nucleation in disperse systems with metastable dispersed phases is applied to the case of ice nucleation in a water emulsion in decane under methane pressure . Activity spectra are obtained for ice-forming particles in the water–decane–methane system. The frequency of ice nucleation on these particles is calculated. Activities of ice- and clathrate-forming particles in this system are compared. It is shown that small amounts of active particles incorporated into the system from an environment can have a significant effect on ice nucleation.

Tài liệu tham khảo

Khvorostyanov, V.I. and Curry, J.A., J. Atmos. Sci., 2004, vol. 61, p. 2676. Khvorostyanov, V.I. and Curry, J.A., J. Atmos. Sci., 2005, vol. 62, p. 261. Cantrell, W. and Heymsfield, A., Bull. Am. Meteorol. Soc., 2005, vol. 86, p. 795. Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U., J. Geophys. Res., 2010, vol. 115, p. D14201. Niedermeier, D., Hartmann, S., Shaw, R.A., et al., Atmos. Chem. Phys., 2010, vol. 10, p. 3601. Murray, B.J., Broadley, S.L., Wilson, T.W., et al., Atmos. Chem. Phys., 2011, vol. 11, p. 4191. Phillips, V., DeMott, P., and Andronache, C., J. Atmos. Sci., 2008, vol. 65, p. 2757. Isono, K. and Ishizaka, Y., J. Res. Atmos., 1972, vol. 6, p. 283. Heneghan, A.F., Wilson, P.W., and Haymet, D.J., PNAS, 2002, vol. 99, p. 9631. Kim, N.S., Shilin, A.G., and Shkodkin, A.B., Kolloidn. Zh., 1990, vol. 52, p. 579. Lupi, L., Hudait, A., and Molinero, V., J. Am. Chem. Soc., 2014, vol. 136, p. 3156. Lupi, L., Hudait, A., and Molinero, V., J. Phys. Chem. A, 2014, vol. 118, p. 7330. Whale, T.F., Rosillo-Lopez, M., Murray, B.J., and Salzmann, C.G., J. Phys. Chem. Lett., 2015, vol. 6, p. 3012. Pummer, B.G., Budke, C., Augustin-Bauditz, S., et al., Atmos. Chem. Phys. Discuss., 2014, vol. 14, p. 24273. Yankofsky, S.A., Levin, Z., Bertold, T., and Sandlerman, N., J. Appl. Meteorol., 1981, vol. 20, p. 1013. Amato, P., Joly, M., Schaupp, C., et al., Atmos. Chem. Phys., 2015, vol. 15, p. 6455. Nesterov, A.N., Reshetnikov, A.M., Manakov, A.Y., et al., J. Mol. Liq., 2015, vol. 204, p. 118. Stoporev, A.S., Manakov, A.Yu., Altunina, L.K., et al., Can. J. Chem., 2015, vol. 93, p. 882. Semenov, M.E., Manakov, A.Yu., and Shitz, E.Yu., J. Therm. Anal. Calorim., 2015, vol. 119, p. 757. Stoporev, A.S., Manakov, A.Yu., Kosyakov, V.I., et al., Energy Fuels, 2016, vol. 30, p. 3735. Shestakov, V.A., Kosyakov, V.I., Manakov, A.Yu., et al., Russ. J. Phys. Chem., 2018, vol. 92, p. 1293. Markin, N.S., Osnovy teorii obrabotki rezul’tatov izmerenii (Fundamentals of the Theory of Measurement Results Processing), Moscow: Izd. Standartov, 1991.