Heteroepitaxial growth of GaN on various powder compounds (AlN, LaN, TiN, NbN, ZrN, ZrB 2 , VN, BeO) by hydride vapor phase epitaxy

Springer Science and Business Media LLC - Tập 8 - Trang 135-139 - 2012
Jinsub Park1, Jun-Seok Ha2, Soon-Ku Hong3, Seog Woo Lee4, Meoung Whan Cho4, Takafumi Yao4, Hae Woo Lee5, Sang Hwa Lee5, Sung-Keun Lee5, Hyo-Jong Lee5
1Department of Electronic Engineering, Hanyang University, Seoul, Korea
2Faculty of Applied Chemical Engineering, Chonnam National University, Gwangju, Korea
3Department of Materials Science and Engineering, Chungnam National University, Daejeon, Korea
4Institute for Materials Research, Tohoku University, Sendai, Japan
5Materials Science and Engineering, Dong-A University, Busan, Korea

Tóm tắt

We investigated the nucleation and growth behavior of GaN on various powders by hydride vapor phase epitaxy. In relative comparison, the nucleation tendency of GaN on each powder can be summarized as AlN > LaN, TiN, NbN > ZrN > ZrB2 > VN, BeO, indicating that the number of nucleation sites increased from right to left. LaN and NbN have not yet been reported as buffer materials for GaN growth. Of these, NbN is expected to be a good buffer material because the interatomic distance on the NbN (111) plane has only 2% difference from that on the GaN (0001) plane.

Tài liệu tham khảo

T. Hashimoto, F. Wu, J. S. Speck, and S. Nakamura, Nature Materials 6, 568 (2007). K. Lorenz, M. Gonsalves, W. Kim, V. Narayanan, and S. Mahajan, Appl. Phys. Lett. 77, 3391 (2000). K. Ito, T. Uchida, S. Lee, S. Tsukimoto, Y. Ikemoto, K. Hirata, and M. Murakami, J. Electron. Mater. 38, 511 (2009). Y. Yamada-Takamura, Z. T. Wang, Y. Fujikawa, T. Sakurai, Q. K. Zue, J. Tolle, P.-L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, Phys. Rev. Lett. 95, 266105 (2005). R. Armitage, Q. Yang, H. Feick, J. Gebauer, E. R. Weber, S. Shinkai, and K. Sasaki, Appl. Phys. Lett. 81, 1450 (2002). M. A. Moram, Y. Zhang, M. J. Kappers, Z. H. Barber, and C. J. Humphreys, Appl. Phys. Lett. 91, 152101 (2007). P. Rajagopal, T. Gehrke, J. C. Roberts, J. D. Brown, T. W. Weeks, E. Piner, and K. Linthicum, Mater. Res. Soc. Symp. Proc. 743, 3 (2003). P.-L. Lie, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, Phys. Rev. B, 72, 245335 (2005). P.-L. Liu, J. Electrochem. Soc. 157, D577 (2010). H.-J. Lee, J.-S. Ha, S. W. Lee, H. J. Lee, H. Goto, S. H. Lee, M. W. Cho, T. Yao, T. Minegishi, T. Hanada, S.-K. Hong, O. Sakata, J. W. Lee, and J. Y. Lee, Appl. Phys. Lett. 91, 202116 (2007). S. W. Lee, T. Minegishi, W. H. Lee, H. Goto, H. J. Lee, S. H. Lee, H.-J. Lee, J. S. Ha, T. Goto, T. Hanada, M. W. Cho, and T. Yao, Appl. Phys. Lett. 90, 061907 (2007). J.-S. Ha, S. W. Lee, H.-J. Lee, H.-J. Lee, S. H. Lee, H. Goto, T. Kato, and K. Fujii, IEEE Photonics Technology Letters, 20, 175 (2008). L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, Nature Materials, 2, 382 (2003). P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, Solid Sate Comm. 81, 23 (1992). A. Trassoudaine, R. Cadoret, and E. Gil-Lafon, J. Cryst. Growth, 260, 7 (2004). E. Aujol, J. Napierala, A. Trassoudaine, E. Gil-Lafon, and R. Cadoret, J. Cryst. Growth, 222, 538 (2001). B. P. Burton, A. van de Walle, and U. Kattner, J. Appl. Phys. 100, 113528 (2006). C. J. Lu, A. V. Davidson, D. Joel, and L. A. Bendersky, J. Appl. Phys. 94, 245 (2003). C. Y. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B 46, 10086 (1992). V. A. Epel’baum and M. A. Gurevich, Zhurnal Fizicheskoi Khimii 32, 2274 (1958). A. N. Christensen, Acta Chemica Scandinavica, Series A 31, 77 (1977). I. I. Timofeeva and L. K. Shvedova, Acta Chemica Scandinavica, Series A 29, 563 (1975). H. Holleck and E. Smailos, Journal of Nuclear Materials 91, 237 (1980). F. Kubel, H. D. Flack, and K. Yvon, Phys. Rev. B 36, 1415 (1987). P. Ettmayer, J. Waldhart, and A. Vendl, Monatshefte fuer Chemie 110, 1109 (1979). J. W. Downs, F. K. Ross, and G. V. Gibbs, Acta Crystallographica B, 41, 425 (1985).