Heteroepitaxial growth of GaN on various powder compounds (AlN, LaN, TiN, NbN, ZrN, ZrB 2 , VN, BeO) by hydride vapor phase epitaxy
Tóm tắt
We investigated the nucleation and growth behavior of GaN on various powders by hydride vapor phase epitaxy. In relative comparison, the nucleation tendency of GaN on each powder can be summarized as AlN > LaN, TiN, NbN > ZrN > ZrB2 > VN, BeO, indicating that the number of nucleation sites increased from right to left. LaN and NbN have not yet been reported as buffer materials for GaN growth. Of these, NbN is expected to be a good buffer material because the interatomic distance on the NbN (111) plane has only 2% difference from that on the GaN (0001) plane.
Tài liệu tham khảo
T. Hashimoto, F. Wu, J. S. Speck, and S. Nakamura, Nature Materials 6, 568 (2007).
K. Lorenz, M. Gonsalves, W. Kim, V. Narayanan, and S. Mahajan, Appl. Phys. Lett. 77, 3391 (2000).
K. Ito, T. Uchida, S. Lee, S. Tsukimoto, Y. Ikemoto, K. Hirata, and M. Murakami, J. Electron. Mater. 38, 511 (2009).
Y. Yamada-Takamura, Z. T. Wang, Y. Fujikawa, T. Sakurai, Q. K. Zue, J. Tolle, P.-L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, Phys. Rev. Lett. 95, 266105 (2005).
R. Armitage, Q. Yang, H. Feick, J. Gebauer, E. R. Weber, S. Shinkai, and K. Sasaki, Appl. Phys. Lett. 81, 1450 (2002).
M. A. Moram, Y. Zhang, M. J. Kappers, Z. H. Barber, and C. J. Humphreys, Appl. Phys. Lett. 91, 152101 (2007).
P. Rajagopal, T. Gehrke, J. C. Roberts, J. D. Brown, T. W. Weeks, E. Piner, and K. Linthicum, Mater. Res. Soc. Symp. Proc. 743, 3 (2003).
P.-L. Lie, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, Phys. Rev. B, 72, 245335 (2005).
P.-L. Liu, J. Electrochem. Soc. 157, D577 (2010).
H.-J. Lee, J.-S. Ha, S. W. Lee, H. J. Lee, H. Goto, S. H. Lee, M. W. Cho, T. Yao, T. Minegishi, T. Hanada, S.-K. Hong, O. Sakata, J. W. Lee, and J. Y. Lee, Appl. Phys. Lett. 91, 202116 (2007).
S. W. Lee, T. Minegishi, W. H. Lee, H. Goto, H. J. Lee, S. H. Lee, H.-J. Lee, J. S. Ha, T. Goto, T. Hanada, M. W. Cho, and T. Yao, Appl. Phys. Lett. 90, 061907 (2007).
J.-S. Ha, S. W. Lee, H.-J. Lee, H.-J. Lee, S. H. Lee, H. Goto, T. Kato, and K. Fujii, IEEE Photonics Technology Letters, 20, 175 (2008).
L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, Nature Materials, 2, 382 (2003).
P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, Solid Sate Comm. 81, 23 (1992).
A. Trassoudaine, R. Cadoret, and E. Gil-Lafon, J. Cryst. Growth, 260, 7 (2004).
E. Aujol, J. Napierala, A. Trassoudaine, E. Gil-Lafon, and R. Cadoret, J. Cryst. Growth, 222, 538 (2001).
B. P. Burton, A. van de Walle, and U. Kattner, J. Appl. Phys. 100, 113528 (2006).
C. J. Lu, A. V. Davidson, D. Joel, and L. A. Bendersky, J. Appl. Phys. 94, 245 (2003).
C. Y. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B 46, 10086 (1992).
V. A. Epel’baum and M. A. Gurevich, Zhurnal Fizicheskoi Khimii 32, 2274 (1958).
A. N. Christensen, Acta Chemica Scandinavica, Series A 31, 77 (1977).
I. I. Timofeeva and L. K. Shvedova, Acta Chemica Scandinavica, Series A 29, 563 (1975).
H. Holleck and E. Smailos, Journal of Nuclear Materials 91, 237 (1980).
F. Kubel, H. D. Flack, and K. Yvon, Phys. Rev. B 36, 1415 (1987).
P. Ettmayer, J. Waldhart, and A. Vendl, Monatshefte fuer Chemie 110, 1109 (1979).
J. W. Downs, F. K. Ross, and G. V. Gibbs, Acta Crystallographica B, 41, 425 (1985).