Heteroclinic orbits in singular systems: A unifying approach
Tóm tắt
We consider singularly perturbed systems
$$\xi = f(\xi ,\eta ,\varepsilon ),\dot \eta = \varepsilon g(\xi ,\eta ,\varepsilon )$$
, such thatξ=f(ξ, αo, 0). αo∃ℝ
m
, has a heteroclinic orbitu(t). We construct a bifurcation functionG(α, ɛ) such that the singular system has a heteroclinic orbit if and only ifG(α, ɛ)=0 has a solutionα=α(ɛ). We also apply this result to recover some theorems that have been proved using different approaches.
Tài liệu tham khảo
Battelli, F., and Lazzari, C. (1993). Heteroclinic orbits in systems with slowly varying coefficients.J. Diff. Eq. 105, 1–29.
Battelli, F., and Palmer, K. J. (1993). Chaos in the Duffing equation.J. Diff. Eq. 101, 276–301.
Cherry, T. M. (1968). Asymptotic solutions of analytical hamiltonian systems.J. Diff. Eq. 4, 142–159.
Fenichel, N. (1979). Geometric singular perturbation theory for ordinary differential equations.J. Diff. Eq. 31, 53–98.
Kurland, H., and Levi, M. (1988). Transversal heteroclinic intersections in slowly varying systems. In Salam, F. A., and Levi, M. (eds.),Dynamical Systems Approaches to Nonlinear Problems in Systems and Circuits, SIAM, pp. 29–38.
Lin, X. B. (1989). Shadowing lemma and singularly perturbed boundary value problems.SIAM J. Appl. Math. 49, 26–54.
Palmer, K. J. (1986). Transverse heteroclinic orbits and Cherry's example of a nonintegrable Hamiltonian system.J. Diff. Eq. 65, 321–360.
Palmer, K. J. (1990). Existence of a tranversal homoclinic point in a degenerate case.Rocky Mt. J. Math. 20, 1099–1118.
Sakamoto, K. (1990). Invariant manifolds in singular perturbation problems for ordinary differential equations.Proc. Roy. Soc. Edinburgh Sect. A 116, 45–78.
Szmolyan, P. (1991). Transversal heteroclinic and homoclinic orbits in singular perturbation problems.J. Diff. Eq. 92, 252–281.
Wiggins, S. (1988).Global Bifurcation and Chaos, Springer-Verlag, New York.