Herstellung, Eigenschaften und Anwendung nano-kristalliner Diamantschichten
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fecht, H.-J., Brühne, K., Gluche, P.: Carbon–based nanomaterials and hybrids: Synthesis, properties, and commercial applications. Pan Stanford Publishing (2014) 1–5, ISBN: 9789814316859
Bachmair, F.: Diamond sensors for future high energy experiments. Nuclear Instruments and Methods in Physics Research Section A 831 (2016) 370–377
Luong, J.H.T., Male, K.B., Glennon, J.D.: Boron–doped diamond electrode: Synthesis, characterization, functionalization and analytical applications. The Analyst 134 (2009) [10] 1965–1979
Tadjer, M.J., Anderson, T.J., Feygelson Jr., T.I.R., Kub, F.J.: Nanocrystalline diamond capped AIGaN/GaN high electron mobility transistors via a sacrificial gate process. Physica Status Solidi (A): Appl. and Mater. 213 (2006) [4] 893–897
Liu, H., Dandy, D. S.: Studies on nucleation process in diamond CVD: An overview of recent developments. Diamond and Related Materials 4 (1995) [10] 1173–1188
Gluche, P., Flöter, A., Ertl, S., Fecht, H.-J.: Commercial applications of diamond–based nano– and microtechnology. in: The Nano–Micro Interface: Bridging the micro and nano worlds. Fecht, H.-J., Werner, M., (edt.), Wiley–VCH (2004) ISBN: 978–3–527–33633–3
Wiora, M., Gretzschel, R., Strobel, S., Gluche, P.: Industrial applications and commer–cial perspectives of nanocrystalline diamond. in: Carbon–Based Nanomaterials and Hybrids: Synthesis, properties, and commercial applications. Fecht, H.-J., Brühne, K., Gluche, P., (edt.) Pan Stanford Publishing (2014) 155–170, ISBN: 9789814316859
Wiora, M., Brühne, K., Caron, A., Flöter, A., Gluche, P., Fecht, H.-J.: Synthesis, relia–bility and applications of nanocrystalline CVD–grown diamond and micro device fabrication. Tech. Proc. 2008 NSTI Nanotechnology Conf. and Trade Show, NSTI–Nanotech, Nanotechno–logy 1 (2008)206–209
Wiora, M., Brühne, K., Flöter, A., Gluche, P., Willey, T.M., Kucheyev, S.O., van Buu–ren, A.W., Hamza, A.V., Biener, J., Fecht, H.-J.: Grain size dependent mechanical pro–perties of nanocrystalline diamond films grown by hot–filament CVD, Diamond and Related Materials 18 (2009) [5–8] 927–930
Sauer, R.: Synthetic diamond — basic research and applications. Cryst. Res. Technol. 34 (1999) [2] 227–241
Hess, P.: The mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal. J. Appl. Phys. 111 (2012) [5] 051101
Bundy, F.P., Hall, H.T., Strong, H.M., Wentorf, R.H.: Man–Made diamonds. Nature 176 (1955) [4471] 51–55
Angus, J.C.: Diamond synthesis by chemical vapor deposition: The early years. Diamond and Related Materials 49 (2014) 77–86
Eversole, W.G.: Synthesis of Diamond, US Patent 3 030 187, (1962)
Eversole, W.G.: Synthesis of Diamond, US Patent 3 030 188, (1962)
Eversole, W.G.: Canadian Patent 628 567, (1961)
Spitsyn, B.V., Bouilov, L.L., Derjaguin, B.V.: Vapor growth of diamond on diamond and other surfaces. J. Crystal Growth 52 (1981) 219–226
Matsumoto, S., Sato, Y., Tsutsumi, M., Setaka, N.: Growth of diamond particles from methane–hydrogen gas. J. Mater. Sci. 17 (1982) [11] 3106–3112
Wiora, M., Brühne, K., Fecht, H.-J.: Synthesis of nanodiamond, in: Carbon–based nano–materials and hybrids: Synthesis, properties, and commercial applications, Fecht, H.-J., Brühne, K., Gluche, P. , (edt.) Pan Stanford Publishing (2014) 5–48, ISBN: 9789814316859
Bähr, M.: Synthetische Diamantschichten und Sensortechnologie. Mess– und Sensortech–nik (2017) 62–65
Mohr, M., Behroudj, A., Wiora, N., Mertens, M., Brühne, K., Fecht, H.-J.: Fabrication and characterization of a hybrid silicon and nanocrystalline diamond membrane pressure sensor. Quantum Matter 6 (2017) [1] 41–44
Kusterer, J., Kohn, E., Lüker, A., Kirby, P. , O′Keefe, M.F.: Diamond high speed and high power MEMS switches, Proc. 4th EMRS DTC Techn. Conf., Edinburgh (2007)
Kusterer, J., Kohn, E.: CVD diamond MEMS, in: CVD diamond for electronic devices and sensors. Sussmann, R.S., (edt.), Wiley (2009) 469–548, ISBN: 978–0470065327
Mohr, M., Caron, A., Herbeck–Engel, P. , Bennewitz, R., Gluche, P. , Brühne, K., Fecht, H.-J., Young’s modulus, fracture strength, and Poisson’s ratio of nanocrystalline diamond flms. J. Appl. Phys. 116 (2014) [12] 124308
Malavé, A., Oesterschulze, E.: All–diamond cantilever probes for scanning probe microscopy applications realized by a proximity lithography process. Rev. Scientifc Inst. 77 (2006) [4] 043708
Holmberg, K., Matthews, A.: Coatings Tribology, 2nd ed. (2009), Elsevier Science, Amsterdam, Boston, ISBN: 978–0444527509
Pastewka, L., Moser, S., Gumbsch, P. , Moseler, M.: Anisotropic mechanical amorphi–zation drives wear in diamond. Nature Mater. 10 (2011) [1] 34–38
Grillo, S.E., Field, J.E.: The friction of CVD diamond at high Hertzian stresses: the effect of load, environment and sliding velocity. J. Phys. D: Appl. Phys. 33 (2000) [6] 595–602
Wiora, M., Sadrifar, N., Brühne, K., Gluche, P. , Fecht, H.-J.: Correlation of micro–structure and tribological properties of dry sliding nanocrystalline diamond coatings. Techn. Proc. NSTI Nanotechnology Conf. and Expo NSTI–Nanotech, 2 (2011) 164–167
Jarratt, M., Stallard, J., Renevier, N. M., Teer, D. G.: An improved diamond–like car–bon coating with exceptional wear properties. Diamond and Related Materials, 12 (2003) [3–7] 1003–1007
Lagrange, J. P. , Deneuville, A., Gheeraert, E.: Activation energy in low compensated homoepitaxial boron–doped diamond flms. Diamond and Related Mater. 7 (1998) [9] 1390–1393
Bhattacharyya, S., Auciello, O., Birrell, J., Carlisle, J.A., Curtiss, L.A., Goyette, A.N., Gruen, D.M., Krauss, A.R., Schlueter, J., Sumant, A., Zapol, P. : Synthesis and characterization of highly–conducting nitrogen–doped ultra–nanocrystalline diamond flms. Appl. Phys. Lett. 79 (2001) [10] 1441–1443
Williams, O.A., Curat, S., Gerbi, J.E., Gruen, D.M., Jackman, R.B.: n–type conductivity in ultrananocrystalline diamond flms. Appl. Phys. Lett. 85 (2004) [10] 1680–1682
Wiora, N., Mertens, M., Mohr, M., Brühne, K., Fecht, H.-J.: Synthesis and character–ization of n–type nitrogenated nanocrystalline diamond. Micromater. and Nanomater. 15 (2013) 1619–2486, ISSN: 1619–2486
Zapol, P. , Sternberg, M., Curtis, L.A., Frauenheim, T., Gruen, D.M.: Tight–bind–ing molecular–dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries. Phys. Rev. B — Condensed Matter and Mater. Phys. 65 (2001) [4] 045403
Birrell, J., Carlisle, J.A., Auciello, O., Gruen, D.M., Gibson, J.M.: Morphology and electronic structure in nitrogen–doped ultrananocrystalline diamond. Appl. Phys. Lett. 81 (2002) [12] 2235–2237
Mertens, M., Lin, I.–N., Manoharan, D., Moheinian, A., Brühne, K., Fecht, H.-J.: Structural properties of highly conductive ultra–nanocrystalline diamond flms grown by hot–flament CVD. AIP Advances 7 (2017) [1] 015312
Wiora, N., Mertens, M., Mohr, M., Brühne, K., Fecht, H.-J.: Piezoresistivity of n–type conductive ultrananocrystalline diamond. Diamond and Related Mater. 70 (2016) 145–150
Mohr, M., Daccache, L., Horvat, S., Brühne, K., Jacob, T., Fecht, H.-J.: Infuence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond flms. Acta Materialia, 122 (2017) [1] 92–98
Morelli, D.T., Beetz, C.P., Perry, T.A.: Thermal conductivity of synthetic diamond flms. J. Appl. Phys. 64 (1988) [6] 3063
Liu, W.L., Shamsa, M., Calizo, I., Balandin, A.A., Ralchenko, V., Popovich, A., Saveliev, A.: Thermal conductivity in nanocrystalline diamond flms: Efects of the grain boundary scattering and nitrogen doping. Appl. Phys. Lett. 89 (2006) [17] 171915
Graebner, J.E., Mucha, J.A., Seibles, L., Kammlott, G.W.: The thermal conductivity of chemical–vapor–deposited diamond flms on silicon. J. Appl. Phys. 71 (1992) [7] 3143
Shamsa, M., Ghosh, S., Calizo, I., Ralchenko, V., Popovich, A., Balandin, A.A.: Ther–mal conductivity of nitrogenated ultrananocrystalline diamond flms on silicon. J. Appl. Phys. 103 (2008) [8] 083538
Plamann, K., Fournier, D., Anger, E., Gicquel, A.: Photothermal examination of the heat difusion inhomogeneity in diamond flms of sub–micron thickness. Diamond and Related Mater. 3 (1994) [4–6] 752–756
Angadi, M.A., Watanabe, T., Bodapati, A., Xiao, X., Auciello, O.: Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin flms. J. Appl. Phys. 99 (2006) [11] 114301
Sermeus, J., Verstraeten, B., Salenbien, R., Pobedinskas, P. , Haenen, K., Glorieux, C., Determination of elastic and thermal properties of a thin nanocrystalline diamond coating using all–optical methods. Thin Solid Films 590 (2015) [1] 284–292
Engenhorst, M., Fecher, J., Notthof, C., Schierning, G., Schmechel, R., Rosiwal, S.M.: Thermoelectric transport properties of boron–doped nanocrystalline diamond foils. Carbon, 81 (2015) 650–662