Herd guidance by multiple sheepdog agents with repulsive force

Artificial Life and Robotics - Tập 27 - Trang 416-427 - 2022
Masao Kubo1, Midori Tashiro2, Hiroshi Sato1, Akihiro Yamaguchi3
1Department of Computer Science, National Defense Academy of Japan, Yokosuka, Japan
2Japan Maritime Self-Defense Force, Shinjuku, Japan
3Department of Information and Systems Engineering, Fukuoka Institute of Technology, Higashi-ku, Japan

Tóm tắt

This paper proposes a scalable method of guiding sheep herding with efficiency and robustness by single or multiple sheepdogs. Recently, much attention has been paid to control methods modeled on a sheep herd by a very small number of sheepdog agents. Usually, these control systems are connected to the Internet in some way, and the system must be capable of dealing with requirements such as robot failure or hacking by malicious entities. However, except for a few studies, multiple sheepdog agents to work together efficiently have been rarely discussed. The main problem is the way to produce an efficient geographical role assignment to multiple sheepdogs. Experimental results show that the introducing repulsion gain $$K_{f4}$$ between a couple of two sheepdogs can emerge circle formation, while the group of sheepdogs guides a flock of sheep to goal. Therefore, it can achieve the task more quickly and reliably than the conventional method of a single sheepdog by increasing the number of units. This paper is based on the paper presented at the proceedings of the 4th International Symposium on Swarm Behavior and Bio-Inspired Robotics (Tashiro et al., The 4th International Symposium on 528 Swarm Behavior and Bio-Inspired Robotics: 397–408, 2021).

Tài liệu tham khảo

Tashiro M, Kubo M, Sato H (2021) Herd guidance by multiple sheepdogs.Swarm2021:The 4th International Symposium on Swarm Behavior and Bio-Inspired Robotics: 397–408 Strömbom D, Mann RP, Wilson AM, Hailes S, Morton AJ, Sumpter DJ, King AJ (2014) Solving the shepherding problem: heuristics for herding autonomous, interacting agents. J R Soc Interface. https://doi.org/10.1098/rsif.2014.0719 Long NK, Sammut K, Sgarioto D, Garratt M, Abbass HA (2020) A Comprehensive Review of Shepherding as a Bio-Inspired Swarm-Robotics Guidance Approach. IEEE Trans Emerg Topics Comput Intell 4(4):523–537. https://doi.org/10.1109/TETCI.2020.2992778 Sueoka Y, Tsunoda Y (2020) Multi-agent system control motivated by sheepdog system. J Soc Instrument Control Eng 59(2): 125–130. https://doi.org/10.11499/sicejl.59.125. https://www.jstage.jst.go.jp/article/sicejl/59/2/59_125/ (Online ISSN 1883-8170, Print ISSN 0453-4662) Lien JM, Rodriguez S, Malric JP, Amato NM (2005) Shepherding behaviors with multiple shepherds. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation: 3402–3407 Harrison JF, Vo C, Lien JM (2010) Scalable and robust shepherding via deformable shapes,MIG’10: Proceedings of the Third international conference on Motion in games,November 2010: 218–229 Özdemir A, Gauci M, Groß R (2018) Shepherding with robots that do not compute. In: ECAL 2017: The Fourteenth European Conference on Artificial Life. European Conference on Artificial Life, ECAL 2017, 04–08 Sep 2017, Lyon, France. MIT Press , Cambridge: 332–339 (ISBN 9780262346337) Sueoka Y, Sugimoto Y, Nakanishi D, Ishikawa M, Osuka K, Ishiguro A (2013) Analysis of implicit control structure in object clustering by distributed autonomous robots. Trans Jpn Soc Mech ENG Series C 79(800):1046–1055 Vaghan R, Sumpter N, Frost A, Cameron S (1998) Robot sheepdog project achieves automatic flock control Proc. Fifth International Conference on the Simulation of Adaptive Behaviour (1998) Lien JM, Bayazit OB, Sowell RT, Rodriguez S, Amato NM (2004) Shepherding behaviors. IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04, 2004 4 : 4159-4164https://doi.org/10.1109/ROBOT.2004.1308924 Hayashi S, Fujioka K (2016) A study on the efficient flock management by multi-agent systems. Proc 78th National Convention of IPSJ 2016: 379–380 Fujioka K (2018) Effective herding in shepherding problem in V-formation control. Trans Inst Syst Control Inform Eng 31(1):21–27 Tsunoda Y, Sueoka Y, Sato Y, Osuka K (2018) Analysis of local-camera-based shepherding navigation. Adv Robot 32(23):1217–1228 Jyh-Ming Lien and Emlyn Pratt (2009) Interactive Planning for Shepherd Motion,Conference: Agents that Learn from Human Teachers, Papers from the 2009 AAAI Spring Symposium, Technical Report SS-09-01, Stanford, California, USA, March 23-25,pp95-102 Pierson A, Schwager M (2018) Controlling Noncooperative Herds with Robotic Herders. IEEE Trans Rob 34(2):517–525. https://doi.org/10.1109/TRO.2017.2776308 Lee W, Kim D (2017) Autonomous Shepherding Behaviors of Multiple Target Steering Robots. Sensors (Basel, Switzerland) 17(12):2729. https://doi.org/10.3390/s17122729 Tsunoda Y, Sueoka Y, TeruyoWada T, Osuka K (2019) Theoretical analysis of mobile control method for group agents motivated by sheepdog shepherding. Trans Soc Instrum Control Eng 55(8):507–515 Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comp Graphics 21(4):25–34