Hemodynamic, Biochemical, and Ventilatory Parameters are Independently Associated with Outcome after Cardiac Arrest

Neurocritical Care - Tập 29 - Trang 69-76 - 2018
Joseph H. Pitcher1, John Dziodzio1, Joshua Keller1, Teresa May1, Richard R. Riker1, David B. Seder1
1Department of Critical Care Services and Neuroscience Institute, Maine Medical Center, Portland, USA

Tóm tắt

Hypotension, hyperglycemia, dysoxia, and dyscarbia may contribute to reperfusion injury, and each is independently associated with poor outcome (PO) after cardiac arrest. We investigated whether the combined effects of these physiological derangements are associated with cardiac arrest outcomes. This institutional review board-approved retrospective cohort study included consecutive resuscitated cardiac arrest patients that received targeted temperature management at Maine Medical Center from 2013 to 2015. We abstracted demographics, intra-arrest factors, and physiological parameters. The primary outcome was dichotomized cerebral performance category (CPC 1–2 vs 3–5) at hospital discharge. After comparing demographics, clinical factors, and persistent post-arrest physiological derangements in patients with good and PO, we constructed a logistic regression model comprised of clinical and demographic factors separately associated with severity, and physiology variables, attempting to evaluate the independent effects of persistent physiological derangements on outcome. Sixty-eight of 222 (31%) patients had CPC 1–2 (good outcome [GO]) at discharge. In bivariate analysis, factors associated with PO included increased time from collapse to resuscitation, non-shockable rhythm, and age-combined Charlson comorbidity index. In multivariate analysis, each persistent physiological derangement incrementally decreased the likelihood of GO [OR GO per derangement 0.71 (interquartile range [IQR] 0.51–0.99), p = 0.042, area under the curve (AUC) for final model 0.769]. Uncorrected physiological derangements in the first 24 h after cardiac arrest are independently associated with PO. Although causality cannot be established, these findings support preclinical models suggesting that aggressive normalization of physiology after resuscitation may be a reasonable strategy to decrease reperfusion injury.

Tài liệu tham khảo

Institute of Medicine (IOM). Strategies to improve cardiac arrest survival: a time to act. Washington, DC: The National Academies Press; 2015. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603. Nolan JP, Laver SR, Welch CA, et al. Outcome following admission to UK intensive care units after cardiac arrest: a secondary analysis of the ICNARC Case Mix Programme Database. Anaesthesia. 2007;62(12):1207–16. Girotra S, Nallamothu BK, Spertus JA, et al. Trends in survival after in-hospital cardiac arrest. N Engl J Med. 2012;367(20):1912–20. Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30(11):2126–8. Kaji AH, Hanif AM, Thomas JL, Niemann JT. Out-of-hospital cardiac arrest: early in-hospital hypotension versus out-of-hospital factors in predicting in-hospital mortality among those surviving to hospital admission. Resuscitation. 2011;82(10):1314–7. Laurikkala J, Wilkman E, Pettila V, et al. Mean arterial pressure and vasopressor load after out-of-hospital cardiac arrest: associations with one-year neurologic outcome. Resuscitation. 2016;105:116–22. Kilgannon JH, Roberts BW, Reihl LR, et al. Early arterial hypotension is common in the post-cardiac arrest syndrome and associated with increased in-hospital mortality. Resuscitation. 2008;79(3):410–6. Mullner M, Sterz F, Binder M, et al. Blood glucose concentration after cardiopulmonary resuscitation influences functional neurological recovery in human cardiac arrest survivors. J Cereb Blood Flow Metab. 1997;17(4):430–6. Daviaud F, Dumas F, Demars N, et al. Blood glucose level and outcome after cardiac arrest: insights from a large registry in the hypothermia era. Intensive Care Med. 2014;40(6):855–62. Bellomo R, Bailey M, Eastwood GM, et al. Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest. Crit Care. 2011;15(2):R90. Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71. Janz DR, Hollenbeck RD, Pollock JS, McPherson JA, Rice TW. Hyperoxia is associated with increased mortality in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. Crit Care Med. 2012;40(12):3135–9. Vaahersalo J, Bendel S, Reinikainen M, et al. Arterial blood gas tensions after resuscitation from out-of-hospital cardiac arrest: associations with long-term neurologic outcome. Crit Care Med. 2014;42(6):1463–70. Lee BK, Jeung KW, Lee HY, et al. Association between mean arterial blood gas tension and outcome in cardiac arrest patients treated with therapeutic hypothermia. Am J Emerg Med. 2014;32(1):55–60. Roberts BW, Kilgannon JH, Chansky ME, et al. Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. Circulation. 2013;127(21):2107–13. Piscator E, Hedberg P, Goransson K, Djarv T. Survival after in-hospital cardiac arrest is highly associated with the age-combined Charlson co-morbidity index in a cohort study from a two-site Swedish University hospital. Resuscitation. 2016;99:79–83. Seder DB, Van der Kloot TE. Methods of cooling: practical aspects of therapeutic temperature management. Crit Care Med. 2009;37(Suppl 7):S211–22. May T, Seder DB, Fraser GL, et al. Moderate-dose sedation and analgesia during targeted temperature management after cardiac arrest. Neurocrit Care. 2015;22:105–11. Paul M, Bougouin W, Geri G, et al. Delayed awakening after cardiac arrest: prevalence and risk factors in the Parisian registry. Intensive Care Med. 2016;42(7):1128–36. Sandroni C, Cariou A, Cavallaro F, et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1816–31. Merchant RM, Yang L, Becker LB, et al. Incidence of treated cardiac arrest in hospitalized patients in the United States. Crit Care Med. 2011;39(11):2401–6. Stub D, Schmicker RH, Anderson ML, et al. Association between hospital post-resuscitative performance and clinical outcomes after out-of-hospital cardiac arrest. Resuscitation. 2015;92:45–52. Sundgreen C, Larsen FS, Herzog TM, et al. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke. 2001;32(1):128–32. Buunk G, van der Hoeven JG, Meinders AE. Cerebrovascular reactivity in comatose patients resuscitated from a cardiac arrest. Stroke. 1997;28(8):1569–73. Bro-Jeppesen J, Annborn M, Hassager C, et al. Hemodynamics and vasopressor support during targeted temperature management at 33 °C versus 36 °C after out-of-hospital cardiac arrest: a post hoc study of the target temperature management trial*. Crit Care Med. 2015;43(2):318–27. Callaway CW, Donnino MW, Fink EL, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–82. Nolan JP, Soar J, Cariou A, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines for post-resuscitation care 2015: section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation. 2015;95:202–22. Pynnonen L, Falkenbach P, Kamarainen A, et al. Therapeutic hypothermia after cardiac arrest–cerebral perfusion and metabolism during upper and lower threshold normocapnia. Resuscitation. 2011;82(9):1174–9. Floyd TF, Clark JM, Gelfand R, et al. Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J Appl Physio. 2003;95(6):2453–61. Helmerhorst HJ, Roos-Blom MJ, van Westerloo DJ, et al. Associations of arterial carbon dioxide and arterial oxygen concentrations with hospital mortality after resuscitation from cardiac arrest. Crit Care. 2015;19:348. Liu Y, Rosenthal RE, Haywood Y, et al. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke. 1998;29(8):1679–86. Kilgannon JH, Jones AE, Parrillo JE, et al. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;123(23):2717–22. Li PA, Shuaib A, Miyashita H, et al. Hyperglycemia enhances extracellular glutamate accumulation in rats subjected to forebrain ischemia. Stroke. 2000;31(1):183–92. Lin B, Ginsberg MD, Busto R. Hyperglycemic exacerbation of neuronal damage following forebrain ischemia: microglial, astrocytic and endothelial alterations. Acta Neuropathol. 1998;96(6):610–20. Russo JJ, James TE, Hibbert B, et al. Hyperglycaemia in comatose survivors of out-of-hospital cardiac arrest. Eur Heart J Acute Cardiovasc Care. 2016. https://doi.org/10.1177/2048872616684685. Oksanen T, Skrifvars MB, Varpula T, et al. Strict versus moderate glucose control after resuscitation from ventricular fibrillation. Intensive Care Med. 2007;33(12):2093–100. Peberdy MA, Callaway CW, Neumar RW, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3):S768–86. Adrie C, Cariou A, Mourvillier B, et al. Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: the OHCA score. Eur Heart J. 2006;27(23):2840–5. Chan PS, Spertus JA, Krumholz HM, et al. A validated prediction tool for initial survivors of in-hospital cardiac arrest. Arch Intern Med. 2012;172(12):947–53. Rittenberger JC, Tisherman SA, Holm MB, Guyette FX, Callaway CW. An early, novel illness severity score to predict outcome after cardiac arrest. Resuscitation. 2011;82(11):1399–404.