Helicobacter pylori VacA, a paradigm for toxin multifunctionality
Tóm tắt
Từ khóa
Tài liệu tham khảo
Collier, R. J. Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39, 1793–803 (2001).
Alouf, J. E. & Freer, J. H. The Comprehensive Sourcebook of Bacterial Protein Toxins (Academic Press, London, San Diego, California, 1999).
Schiavo, G. & van der Goot, F. G. The bacterial toxin toolkit. Nature Rev. Mol. Cell Biol. 2, 530–537 (2001).
Parker, M. W. Cryptic clues as to how water-soluble protein toxins form pores in membranes. Toxicon 42, 1–6 (2003).
Fivaz, M., Abrami, L., Tsitrin, Y. & van der Goot, F. G. Not as simple as just punching a hole. Toxicon 39, 1637–1645 (2001).
Montecucco, C., Papini, E. & Schiavo, G. Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett. 346, 92–98 (1994).
Marshall, B. J. & Warren, J. R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311–1315 (1984).
Dunn, B. E., Cohen, H. & Blaser, M. J. Helicobacter pylori. Clin. Microbiol. Rev. 10, 720–741 (1997).
Blaser, M. J. & Atherton, J. C. Helicobacter pylori persistence: biology and disease. J. Clin. Invest. 113, 321–333 (2004).
Monack, D. M., Mueller, A. & Falkow, S. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nature Rev. Microbiol. 2, 747–765 (2004).
Petersen, A. M., Sorensen, K., Blom, J. & Krogfelt, K. A. Reduced intracellular survival of Helicobacter pylori vacA mutants in comparison with their wild-types indicates the role of VacA in pathogenesis. FEMS Immunol. Med. Microbiol. 30, 103–108 (2001).
Amieva, M. R., Salama, N. R., Tompkins, L. S. & Falkow, S. Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell. Microbiol. 4, 677–690 (2002).
Leunk, R. D., P. T., J., David, B. C., Kraft, W. G. & Morgan, D. R. Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J. Med. Microbiol. 26, 93–99 (1988). The first description of H. pylori vacuolating cytotoxic activity.
Cover, T. L. & Blaser, M. J. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem. 267, 10570–10575 (1992). Describes the initial purification and characterization of H. pylori VacA.
Cover, T. L., Tummuru, M. K. R., Cao, P., Thompson, S. A. & Blaser, M. J. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J. Biol. Chem. 269, 10566–10573 (1994).
Telford, J. L. et al. Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J. Exp. Med. 179, 1653–1658 (1994).
Schmitt, W. & Haas, R. Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol. Microbiol. 12, 307–319 (1994).
Ilver, D., Barone, S., Mercati, D., Lupetti, P. & Telford, J. L. Helicobacter pylori toxin VacA is transferred to host cells via a novel contact-dependent mechanism. Cell. Microbiol. 6, 167–174 (2004).
Lupetti, P. et al. Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin. J. Cell. Biol. 133, 801–807 (1996).
Cover, T. L., Hanson, P. I. & Heuser, J. E. Acid-induced dissociation of VacA, the Helicobacter pylori vacuolating cytotoxin, reveals its pattern of assembly. J. Cell Biol. 138, 759–769 (1997). An analysis of the quaternary structure of VacA oligomers.
Lanzavecchia, S. et al. Three-dimensional reconstruction of metal replicas of the Helicobacter pylori vacuolating cytotoxin. J. Struct. Biol. 121, 9–18 (1998).
Adrian, M., Cover, T. L., Dubochet, J. & Heuser, J. E. Multiple oligomeric states of the Helicobacter pylori vacuolating toxin demonstrated by cryo-electron microscopy. J. Mol. Biol. 318, 121–133 (2002).
Czajkowsky, D. M., Iwamoto, H., Cover, T. L. & Shao, Z. The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc. Natl Acad. Sci. USA 96, 2001–2006 (1999).
Tombola, F. et al. Helicobacter pylori vacuolating toxin forms anion-selective channels in planar lipid bilayers: possible implications for the mechanism of cellular vacuolation. Biophys. J. 76, 1401–1409 (1999).
Iwamoto, H., Czajkowsky, D. M., Cover, T. L., Szabo, G. & Shao, Z. VacA from Helicobacter pylori: a hexameric chloride channel. FEBS Lett. 450, 101–104 (1999).
Szabo, I. et al. Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO J. 18, 5517–5527 (1999). The first demonstration that VacA forms anion-selective membrane channels in cells.
de Bernard, M. et al. Low pH activates the vacuolating toxin of Helicobacter pylori, which becomes acid and pepsin resistant. J. Biol. Chem. 270, 23937–23940 (1995).
Molinari, M. et al. The acid activation of Helicobacter pylori toxin VacA: structural and membrane binding studies. Biochem. Biophys. Res. Commun. 248, 334–340 (1998).
Yahiro, K. et al. Activation of Helicobacter pylori VacA toxin by alkaline or acid conditions increases its binding to a 250-kDa receptor protein-tyrosine phosphatase β. J. Biol. Chem. 274, 36693–36699 (1999).
Nguyen, V. Q., Caprioli, R. M. & Cover, T. L. Carboxy-terminal proteolytic processing of Helicobacter pylori vacuolating toxin. Infect. Immun. 69, 543–546 (2001).
Ye, D. & Blanke, S. R. Functional complementation reveals the importance of intermolecular monomer interactions for Helicobacter pylori VacA vacuolating activity. Mol. Microbiol. 43, 1243–1253 (2002).
Willhite, D. C., Ye, D. & Blanke, S. R. Fluorescence resonance energy transfer microscopy of the Helicobacter pylori vacuolating cytotoxin within mammalian cells. Infect. Immun. 70, 3824–3832 (2002).
Torres, V. J., McClain, M. S. & Cover, T. L. Interactions between p-33 and p-55 domains of the Helicobacter pylori vacuolating cytotoxin (VacA). J. Biol. Chem. 279, 2324–2331 (2004).
Garner, J. A. & Cover, T. L. Binding and internalization of the Helicobacter pylori vacuolating cytotoxin by epithelial cells. Infect. Immun. 64, 4197–4203 (1996).
Pagliaccia, C. et al. The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity. Proc. Natl Acad. Sci. USA 95, 10212–10217 (1998).
Wang, W. -C., Wang, H. -J. & Kuo, C. -H. Two distinctive cell binding patterns by vacuolating toxin fused with glutathione S-transferase: one high-affinity m1-specific binding and the other lower-affinity binding for variant m forms. Biochemistry 40, 11887–11896 (2001).
Wang, H. J. & Wang, W. C. Expression and binding analysis of GST–VacA fusions reveals that the Cterminal approximately 100-residue segment of exotoxin is crucial for binding in HeLa cells. Biochem. Biophys. Res. Commu.n 278, 449–454 (2000).
Reyrat, J. M. et al. 3D imaging of the 58-kDa cell binding subunit of the Helicobacter pylori cytotoxin. J. Mol. Biol. 290, 459–470 (1999).
Ye, D., Willhite, D. C. & Blanke, S. R. Identification of the minimal intracellular vacuolating domain of the Helicobacter pylori vacuolating toxin. J. Biol. Chem. 274, 9277–9282 (1999).
de Bernard, M. et al. Identification of the Helicobacter pylori VacA toxin domain active in the cell cytosol. Infect. Immun. 66, 6014–6016 (1998).
de Bernard, M. et al. Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Mol. Microbiol. 26, 665–674 (1997).
Vinion-Dubiel, A. D. et al. A dominant negative mutant of Helicobacter pylori vacuolating toxin (VacA) inhibits VacA-induced cell vacuolation. J. Biol. Chem. 274, 37736–37742 (1999).
McClain, M. S. et al. Essential role of a GXXXG motif for membrane channel formation by Helicobacter pylori vacuolating toxin. J. Biol. Chem. 278, 12101–12108 (2003). Demonstration that membrane channel formation has an important role in VacA cytotoxicity.
McClain, M. S., Cao, P. & Cover, T. L. Amino-terminal hydrophobic region of Helicobacter pylori vacuolating cytotoxin (VacA) mediates transmembrane protein dimerization. Infect. Immun. 69, 1181–1184 (2001).
Kim, S., Chamberlain, A. K. & Bowie, J. U. Membrane channel structure of Helicobacter pylori vacuolating toxin: role of multiple GXXXG motifs in cylindrical channels. Proc. Natl Acad. Sci. USA 101, 5988–5991 (2004).
Ye, D. & Blanke, S. R. Mutational analysis of the Helicobacter pylori vacuolating toxin amino terminus: identification of amino acids essential for cellular vacuolation. Infect. Immun. 68, 4354–4357 (2000).
Blaser, M. J. & Berg, D. E. Helicobacter pylori genetic diversity and risk of human disease. J. Clin. Invest. 107, 767–773 (2001).
Atherton, J. C. et al. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270, 17771–17777 (1995). Description of multiple families of vacA alleles.
Van Doorn, L. J. et al. Geographic distribution of vacA allelic types of Helicobacter pylori. Gastroenterology 116, 823–830 (1999).
McClain, M. S. et al. A 12-amino-acid segment, present in type s2 but not type s1 Helicobacter pylori VacA proteins, abolishes cytotoxin activity and alters membrane channel formation. J. Bacteriol. 183, 6499–6508 (2001).
Letley, D. P., Rhead, J. L., Twells, R. J., Dove, B. & Atherton, J. C. Determinants of non-toxicity in the gastric pathogen Helicobacter pylori. J. Biol. Chem. 278, 26734–26741 (2003).
Letley, D. P. & Atherton, J. C. Natural diversity in the N terminus of the mature vacuolating cytotoxin of Helicobacter pylori determines cytotoxin activity. J. Bacteriol. 182, 3278–3280 (2000).
Ji, X. et al. Cell specificity of Helicobacter pylori cytotoxin is determined by a short region in the polymorphic midregion. Infect. Immun. 68, 3754–3757 (2000).
Tombola, F. et al. How the loop and middle regions influence the properties of Helicobacter pylori VacA channels. Biophys. J. 81, 3204–3215 (2001).
Eaton, K. A., Cover, T. L., Tummuru, M. K., Blaser, M. J. & Krakowka, S. Role of vacuolating cytotoxin in gastritis due to Helicobacter pylori in gnotobiotic piglets. Infect. Immun. 65, 3462–3464 (1997).
Wirth, H. P., Beins, M. H., Yang, M., Tham, K. T. & Blaser, M. J. Experimental infection of Mongolian gerbils with wild-type and mutant Helicobacter pylori strains. Infect. Immun. 66, 4856–4866 (1998).
Ogura, K. et al. Virulence factors of Helicobacter pylori responsible for gastric diseases in mongolian gerbil. J. Exp. Med. 192, 1601–1610 (2000).
Salama, N. R., Otto, G., Tompkins, L. & Falkow, S. Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect. Immun. 69, 730–736 (2001). Demonstration of a role for VacA in colonization of the stomach by H. pylori.
Guo, B. P. & Mekalanos, J. J. Rapid genetic analysis of Helicobacter pylori gastric mucosal colonization in suckling mice. Proc. Natl Acad. Sci. USA 99, 8354–8359 (2002).
Marchetti, M. et al. Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science 267, 1655–1658 (1995).
Marchetti, M. et al. Protection against Helicobacter pylori infection in mice by intragastric vaccination with H. pylori antigens is achieved using a non-toxic mutant of E. coli heat-labile enterotoxin (LT) as adjuvant. Vaccine 16, 33–37 (1998).
Ghiara, P. et al. Therapeutic intragastric vaccination against Helicobacter pylori in mice eradicates an otherwise chronic infection and confers protection against re-infection. Infect. Immun. 65, 4996–5002 (1997).
van Doorn, L. J. et al. Clinical relevance of the cagA, vacA and iceA status of Helicobacter pylori. Gastroenterology 115, 58–66 (1998).
Figueiredo, C. et al. Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J. Natl Cancer Inst. 94, 1680–1687 (2002).
Atherton, J. C., Peek, R. M. Jr, Tham, K. T., Cover, T. L. & Blaser, M. J. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology 112, 92–99 (1997).
Fujikawa, A. et al. Mice deficient in protein tyrosine phosphatase receptor type Z are resistant to gastric ulcer induction by VacA of Helicobacter pylori. Nature Genet. 33, 375–381 (2003).In vivo analysis of the role of RPTPβ as a VacA receptor.
Supajatura, V. et al. Cutting edge: VacA, a vacuolating cytotoxin of Helicobacter pylori, directly activates mast cells for migration and production of proinflammatory cytokines. J. Immunol. 168, 2603–2607 (2002).
Smoot, D. T., Resau, J. H., Earlington, M. H., Simpson, M. & Cover, T. L. Effects of Helicobacter pylori vacuolating cytotoxin on primary cultures of human gastric epithelial cells. Gut 39, 795–799 (1996).
Cover, T. L., Puryear, W., Pérez-Pérez, G. I. & Blaser, M. J. Effect of urease on HeLa cell vacuolation induced by Helicobacter pylori cytotoxin. Infect. Immun. 59, 1264–1270 (1991).
Papini, E. et al. Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments. Proc. Natl Acad. Sci. USA 91, 9720–9724 (1994). Demonstration that VacA-induced vacuoles arise from late endosomes.
Cover, T. L., Halter, S. A. & Blaser, M. J. Characterization of HeLa cell vacuoles induced by Helicobacter pylori broth culture supernatant. Hum. Pathol. 23, 1004–1010 (1992).
Catrenich, C. E. & Chestnut, M. H. Character and origin of vacuoles induced in mammalian cells by the cytotoxin of Helicobacter pylori. J. Med. Microbiol. 37, 389–395 (1992).
Molinari, M. et al. Vacuoles induced by Helicobacter pylori toxin contain both late endosomal and lysosomal markers. J. Biol. Chem. 272, 25339–25344 (1997).
Li, Y., Wandinger-Ness, A., Goldenring, J. R. & Cover, T. L. Clustering and redistribution of late endocytic compartments in response to Helicobacter pylori vacuolating toxin. Mol. Biol. Cell 15, 1946–1959 (2004).
Morbiato, L. et al. Vacuolation induced by VacA toxin of Helicobacter pylori requires the intracellular accumulation of membrane permeant bases, Cl− and water. FEBS Lett. 508, 479–483 (2001).
Cover, T. L., Vaughn, S. G., Cao, P. & Blaser, M. J. Potentiation of Helicobacter pylori vacuolating toxin activity by nicotine and other weak bases. J. Infect. Dis. 166, 1073–1078 (1992).
Satin, B. et al. Effect of Helicobacter pylori vacuolating toxin on maturation and extracellular release of procathepsin D and on epidermal growth factor degradation. J. Biol. Chem. 272, 25022–25028 (1997).
Molinari, M. et al. Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA. J. Exp. Med. 187, 135–140 (1998). Describes the inhibitory effects of VacA on antigen presentation.
Kimura, M. et al. Vacuolating cytotoxin purified from Helicobacter pylori causes mitochondrial damage in human gastric cells. Microb. Pathog. 26, 45–52 (1999).
Galmiche, A. et al. The N-terminal 34-kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO. J 19, 6361–6370 (2000). Identifies mitochondria as a target for VacA.
Willhite, D. C. & Blanke, S. R. Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell. Microbiol. 6, 143–154 (2004).
Willhite, D. C., Cover, T. L. & Blanke, S. R. Cellular vacuolation and mitochondrial cytochrome c release are independent outcomes of Helicobacter pylori vacuolating cytotoxin activity that are each dependent on membrane channel formation. J. Biol. Chem. 278, 48204–48209 (2003).
Kuck, D. et al. Vacuolating cytotoxin of Helicobacter pylori induces apoptosis in the human gastric epithelial cell line AGS. Infect. Immun. 69, 5080–5087 (2001).
Cover, T. L., Krishna, U. S., Israel, D. A. & Peek, R. M. Jr. Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res. 63, 951–957 (2003).
Nakayama, M. et al. Helicobacter pylori VacA activates the p38/ATF-2-mediated signal pathway in AZ-521 cells. J. Biol. Chem. 279, 7024–7028 (2004).
Boncristiano, M. et al. The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J. Exp. Med. 198, 1887–1897 (2003).
de Bernard, M. et al. The Helicobacter pylori VacA cytotoxin activates RBL-2H3 cells by inducing cytosolic calcium oscillations. Cell. Microbiol. 7, 191–198 (2005).
Papini, E. et al. Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J. Clin. Invest. 102, 813–820 (1998).
Tombola, F. et al. The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. J. Clin. Invest. 108, 929–937 (2001).
Debellis, L., Papini, E., Caroppo, R., Montecucco, C. & Curci, S. Helicobacter pylori cytotoxin VacA increases alkaline secretion in gastric epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1440–G1448 (2001).
Guarino, A. et al. Enterotoxic effect of the vacuolating toxin produced by Helicobacter pylori in Caco-2 cells. J. Infect. Dis. 178, 1373–1378 (1998).
Zheng, P. Y. & Jones, N. L. Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. Cell. Microbiol. 5, 25–40 (2003).
Allen, L. A., Schlesinger, L. S. & Kang, B. Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. J. Exp. Med. 191, 115–128 (2000).
Rittig, M. G. et al. Helicobacter pylori-induced homotypic phagosome fusion in human monocytes is independent of the bacterial vacA and cag status. Cell. Microbiol. 5, 887–899 (2003).
Gebert, B., Fischer, W., Weiss, E., Hoffman, R. & Haas, R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301, 1099–1102 (2003). The first description of the effects of VacA on T lymphocytes.
Sundrud, M. S., Torres, V. J., Unutmaz, D. & Cover, T. L. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc. Natl Acad. Sci. USA 101, 7727–7732 (2004).
Yahiro, K. et al. Protein-tyrosine phosphatase α, RPTPα, is a Helicobacter pylori VacA receptor. J. Biol. Chem. 278, 19183–19189 (2003).
Moll, G. et al. Lipid interaction of the 37-kDa and 58-kDa fragments of the Helicobacter pylori cytotoxin. Eur. J. Biochem. 234, 947–952 (1995).
Seto, K., Hayashi-Kuwabara, Y., Yoneta, T., Suda, H. & Tamaki, H. Vacuolation induced by cytotoxin from Helicobacter pylori is mediated by the EGF receptor in HeLa cells. FEBS Lett. 431, 347–350 (1998).
Utt, M., Danielsson, B. & Wadstrom, T. Helicobacter pylori vacuolating cytotoxin binding to a putative cell surface receptor, heparan sulfate, studied by surface plasmon resonance. FEMS Immunol. Med. Microbiol. 30, 109–113 (2001).
Massari, P. et al. Binding of the Helicobacter pylori vacuolating cytotoxin to target cells. Infect. Immun. 66, 3981–3984 (1998).
McClain, M. S., Schraw, W., Ricci, V., Boquet, P. & Cover, T. L. Acid-activation of Helicobacter pylori vacuolating cytotoxin (VacA) results in toxin internalization by eukaryotic cells. Mol. Microbiol. 37, 433–442 (2000).
Ricci, V. et al. High cell sensitivity to Helicobacter pylori VacA toxin depends on a GPI-anchored protein and is not blocked by inhibition of the clathrin-mediated pathway of endocytosis. Mol. Biol. Cell 11, 3897–3909 (2000).
Padilla, P. I. et al. Morphologic differentiation of HL-60 cells is associated with appearance of RPTPβ and induction of Helicobacter pylori VacA sensitivity. J. Biol. Chem. 275, 15200–15206 (2000).
Yahiro, K. et al. Essential domain of receptor tyrosine phosphatase β (RPTPβ) for interaction with Helicobacter pylori vacuolating cytotoxin. J. Biol. Chem. 279, 51013–51021 (2004).
Schraw, W., Li, Y., McClain, M. S., van der Goot, F. G. & Cover, T. L. Association of Helicobacter pylori vacuolating toxin (VacA) with lipid rafts. J. Biol. Chem. 277, 34642–34650 (2002).
Patel, H. K. et al. Plasma membrane cholesterol modulates cellular vacuolation induced by the Helicobacter pylori vacuolating cytotoxin. Infect. Immun. 70, 4112–4123 (2002).
Kuo, C. H. & Wang, W. C. Binding and internalization of Helicobacter pylori VacA via cellular lipid rafts in epithelial cells. Biochem. Biophys. Res. Commun. 303, 640–644 (2003).
Geisse, N. A., Cover, T. L., Henderson, R. M. & Edwardson, J. M. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy. Biochem. J. 381, 911–917 (2004).
Gauthier, N. C. et al. Glycosylphosphatidylinositol-anchored proteins and actin cytoskeleton modulate chloride transport by channels formed by the Helicobacter pylori vacuolating cytotoxin VacA in HeLa cells. J. Biol. Chem. 279, 9481–9489 (2004).
Fiocca, R. et al. Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J. Pathol. 188, 220–226 (1999).
Ricci, V. et al. Helicobacter pylori vacuolating toxin accumulates within the endosomal- vacuolar compartment of cultured gastric cells and potentiates the vacuolating activity of ammonia. J. Pathol. 183, 453–459 (1997).
Tombola, F. et al. Inhibition of the vacuolating and anion channel activities of the VacA toxin of Helicobacter pylori. FEBS Lett. 460, 221–225 (1999).
de Bernard, M., Moschioni, M., Napolitani, G., Rappuoli, R. & Montecucco, C. The VacA toxin of Helicobacter pylori identifies a new intermediate filament-interacting protein. EMBO J. 19, 48–56 (2000).
Hennig, E. E., Butruk, E. & Ostrowski, J. RACK1 protein interacts with Helicobacter pylori VacA cytotoxin: the yeast two-hybrid approach. Biochem. Biophys. Res. Commun. 289, 103–110 (2001).
Ricci, V. et al. Effect of Helicobacter pylori on gastric epithelial cell migration and proliferation in vitro: role of VacA and CagA. Infect. Immun. 64, 2829–2833 (1996).
Kobayashi, H. et al. The effect of Helicobacter pylori on gastric acid secretion by isolated parietal cells from a guinea pig. Association with production of vacuolating toxin by H. pylori. Scand. J. Gastroenterol. 31, 428–433 (1996).
Bantel, H. et al. α-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J. Cell Biol. 155, 637–648 (2001).
De Haan, L. & Hirst, T. R. Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms. Mol. Membr. Biol. 21, 77–92 (2004).
Tamura, M., Nogimori, K., Yajima, M., Ase, K. & Ui, M. A role of the B-oligomer moiety of islet-activating protein, pertussis toxin, in development of the biological effects on intact cells. J. Biol. Chem. 258, 6756–6761 (1983).
Pizza, M., Masignani, V. & Rappuoli, R. in The Comprehensive Sourcebook of Bacterial Protein Toxins Second Edition 45–72 (Academic Press, 1999).
Abrami, L., Fivaz, M., Glauser, P. E., Parton, R. G. & van der Goot, F. G. A pore-forming toxin interacts with a GPI-anchored protein and causes vacuolation of the endoplasmic reticulum. J. Cell Biol. 140, 525–540 (1998).
Lacy, D. B. & Collier, R. J. Structure and function of anthrax toxin. Curr. Top. Microbiol. Immunol. 271, 61–85 (2002).
Kirby, J. E. Anthrax lethal toxin induces human endothelial cell apoptosis. Infect. Immun. 72, 430–439 (2004).
Agrawal, A. et al. Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature 424, 329–334 (2003).
Friedlander, A. M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261, 7123–7126 (1986).
Obrig, T. G. et al. Direct cytotoxic action of Shiga toxin on human vascular endothelial cells. Infect. Immun. 56, 2373–2378 (1988).
Tesh, V. L., Ramegowda, B. & Samuel, J. E. Purified Shiga-like toxins induce expression of proinflammatory cytokines from murine peritoneal macrophages. Infect. Immun. 62, 5085–5094 (1994).
Ling, H. et al. Structure of the shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37, 1777–1788 (1998).
Stein, P. E. et al. Structure of a pertussis toxin-sugar complex as a model for receptor binding. Nature Struct. Biol. 1, 591–596 (1994).
Barbieri, J. T. & Sun, J. Pseudomonas aeruginosa ExoS and ExoT. Rev. Physiol. Biochem. Pharmacol. 152, 79–92 (2004).
Goehring, U. M., Schmidt, G., Pederson, K. J., Aktories, K. & Barbieri, J. T. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem. 274, 36369–36372 (1999).
Vincent, T. S., Fraylick, J. E., McGuffie, E. M. & Olson, J. C. ADP-ribosylation of oncogenic Ras proteins by Pseudomonas aeruginosa exoenzyme S in vivo. Mol. Microbiol. 32, 1054–1064 (1999).
Hewlett, E. L., Kim, K. J., Lee, S. J. & Gray, M. C. Adenylate cyclase toxin from Bordetella pertussis: current concepts and problems in the study of toxin functions. Int. J. Med. Microbiol. 290, 333–335 (2000).
Ladant, D. & Ullmann, A. Bordetella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol. 7, 172–176 (1999).
Cover, T. L., Reddy, L. Y. & Blaser, M. J. Effects of ATPase inhibitors on the response of HeLa cells to Helicobacter pylori vacuolating toxin. Infect. Immun. 61, 1427–1431 (1993).
Papini, E. et al. Bafilomycin A1 inhibits Helicobacter pylori-induced vacuolization of HeLa cells. Mol. Microbiol. 7, 323–327 (1993).
Papini, E. et al. The vacuolar ATPase proton pump is present on intracellular vacuoles induced by Helicobacter pylori. J. Med. Microbiol. 45, 84–89 (1996).
Papini, E. et al. The small GTP binding protein rab7 is essential for cellular vacuolation induced by Helicobacter pylori cytotoxin. EMBO J. 16, 15–24 (1997).
Hotchin, N. A., Cover, T. L. & Akhtar, N. Cell vacuolation induced by the VacA cytotoxin of Helicobacter pylori is regulated by the rac1 GTPase. J. Biol. Chem. 275, 14009–14012 (2000).
Suzuki, J. et al. Involvement of syntaxin 7 in human gastric epithelial cell vacuolation induced by the Helicobacter pylori-produced cytotoxin VacA. J. Biol. Chem. 278, 25585–25590 (2003).
Suzuki, J. et al. Dynamin is involved in human epithelial cell vacuolation caused by the Helicobacter pylori-produced cytotoxin VacA. J. Clin. Invest. 107, 363–370 (2001).
Ikonomov, O. C., Sbrissa, D., Yoshimori, T., Cover, T. L. & Shisheva, A. PIKfyve kinase and SKD1 AAA ATPase define distinct endocytic compartments. Only PIKfyve expression inhibits the cell-vacuolating activity of Helicobacter pylori VacA toxin. J. Biol. Chem. 277, 46785–46790 (2002).
de Bernard, M., Moschioni, M., Habermann, A., Griffiths, G. & Montecucco, C. Cell vacuolization induced by Helicobacter pylori VacA cytotoxin does not depend on late endosomal SNAREs. Cell. Microbiol. 4, 11–18 (2002).
Fischer, W., Buhrdorf, R., Gerland, E. & Haas, R. Outer membrane targeting of passenger proteins by the vacuolating cytotoxin autotransporter of Helicobacter pylori. Infect. Immun. 69, 6769–6775 (2001).
Amieva, M. R. et al. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300, 1430–1434 (2003).