Helical structures of unnatural peptides for biological applications

Springer Science and Business Media LLC - Tập 3 - Trang 226-231 - 2014
Soo Hyuk Choi1
1Department of Chemistry, Yonsei University, Seoul, Republic of Korea

Tóm tắt

Many important biological functions involve the recognition of helical domains of natural proteins. A number of strategies have been developed to mimic natural helices in proteins. Unnatural peptides are constructed with incorporation of artificial building blocks other than α-amino acid residues, and could adopt stable helical conformations. These nontraditional helical oligomers have been explored to mimic biological functions involved with helical domains of natural proteins. This review provides representative examples of the mimicry of natural peptide helices with unnatural ones and related biological applications.

Tài liệu tham khảo

Crisma M, Formaggio F, Moretto A, Toniolo C. Peptide helices based on α-amino acids. Biopolymers. 2006; 84(1):3–12. Guichard G, Huc I, Synthetic foldamers. Chem Commun. 2011; 47(21):5933–5941. Goodman CM, Choi S, Shandler S, DeGrado WF. Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol. 2007; 3(5):252–262. Gellman SH. Foldamers: A manifesto. Acc Chem Res. 1998; 31(4):173–180. Cheng RP, Gellman SH, DeGrado WF. beta-peptides: From structure to function. Chem Rev. 2001; 101(10):3219–3232. Seebach D, Hook DF, Glättli A. Helices and other secondary structures of β- and γ-peptides. Peptide Sci. 2006; 84(1):23–37. Pilsl LKA, Reiser O. α/β-Peptide foldamers: State of the art. Amino Acids. 2011; 41(3):709–718. Martinek TA, Fulop F. Peptidic foldamers: Ramping up diversity. Chem Soc Rev. 2012; 41(2):687–702. Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS. A field guide to foldamers. Chem Rev. 2001; 101(12):3893–4011. Appella DH, Christianson LA, Karle IL, Powell DR, Gellman SH. β-Peptide foldamers: Robust helix formation in a new family of β-Amino acid oligomers. J Am Chem Soc. 1996; 118(51):13071–13072. Seebach D, Overhand M, Kühnle FNM, Martinoni B, Oberer L, Hommel U, Widmer H. β-Peptides: Synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a β-hexapeptide in solution and its stability towards pepsin. Helv Chim Acta. 1996; 79(4):913–941. Appella DH, Christianson LA, Klein DA, Powell DR, Huang X, Barchi JJ, Gellman SH. Residue-based control of helix shape in β-peptide oligomers. Nature. 1997; 387(6631):381–384. Porter EA, Wang X, Lee H-S, Weisblum B, Gellman SH. Antibiotics: Non-haemolytic β-amino acid oligomers. Nature. 2000; 404(6778):565. English EP, Chumanov RS, Gellman SH, Compton T. Rational development of β-peptide inhibitors of human cytomegalovirus entry. J Biol Chem. 2006; 281(5):2661–2667. Seebach D, Abele S, Gademann K, Guichard G, Hintermann T, Jaun B, Matthews JL, Schreiber JV, Oberer L, Hommel U, Widmer H. β2- and β3-peptides with proteinaceous side chains: Synthesis and solution structures of constitutional isomers, a novel helical secondary structure and the influence of solvation and hydrophobic interactions on folding. Helv Chim Acta. 1998; 81(5-8):932–982. Seebach D, Matthews JL. β-Peptides: A surprise at every turn. Chem Commun. 1997; (21):2015–2022. Lee M-R, Raguse TL, Schinnerl M, Pomerantz WC, Wang X, Wipf P, Gellman SH. Origins of the high 14-helix propensity of cyclohexyl-rigidified residues in β-peptides. Org Lett. 2007; 9(9):1801–1804. Podlech J, Seebach D, The Arndt-Eistert reaction in peptide chemistry: A facile access to homopeptides. Angew Chem Int Edit. 1995; 34(4):471–472. Hamuro Y, Schneider JP, DeGrado WF. De novo design of antibacterial β-peptides. J Am Chem Soc. 1999; 121(51):12200–12201. Epand RF, Raguse TL, Gellman SH, Epand RM. Antimicrobial 14-helical β-peptides: Potent bilayer disrupting agents?. Biochemistry. 2004; 43(29):9527–9535. Karlsson AJ, Pomerantz WC, Weisblum B, Gellman SH, Palecek SP. Antifungal activity from 14-helical β-peptides. J Am Chem Soc. 2006; 128(39):12630–12631. Daniels DS, Petersson EJ, Qiu JX, Schepartz A. High-resolution structure of a β-peptide bundle. J Am Chem Soc. 2007; 129(6):1532–1533. Park J-S, Lee H-S, Lai JR, Kim BM, Gellman SH. Accommodation of α-substituted residues in the β-peptide 12-helix: Expanding the range of substitution patterns available to a foldamer scaffold. J Am Chem Soc. 2003; 125(28):8539–8545. LePlae PR, Fisk JD, Porter EA, Weisblum B, Gellman SH. Tolerance of acyclic residues in the β-peptide 12-helix: Access to diverse side-chain arrays for biological applications. J Am Chem Soc. 2002; 124(24):6820–6821. Choi SH, Guzei IA, Spencer LC, Gellman SH. Crystallographic characterization of 12-helical secondary structure in β-peptides containing side chain groups. J Am Chem Soc. 2010; 132(39):13879–13885. Peelen TJ, Chi Y, English EP, Gellman SH. Synthesis of 4,4-disubstituted 2-aminocyclopentanecarboxylic acid derivatives and their incorporation into 12-helical β-peptides. Org Lett. 2004; 6(24):4411–4414. Horne WS, Gellman SH. Foldamers with heterogeneous backbones. Acc Chem Res. 2008; 41(10):1399–13408. Hayen A, Schmitt MA, Ngassa FN, Thomasson KA, Gellman SH. Two helical conformations from a single foldamer backbone: “Split personality” in short α/β-peptides. Angew Chem Int Edit. 2004; 43(4):505–510. De Pol S, Zorn C, Klein CD, Zerbe O, Reiser O. Surprisingly stable helical conformations in α/β-peptides by incorporation of cis-β-aminocyclopropane carboxylic acids. Angew Chem Int Edit. 2004; 43(4):511–514. Schmitt MA, Weisblum B, Gellman SH. Unexpected relationships between structure and function in α,β-peptides: Antimicrobial foldamers with heterogeneous backbones. J Am Chem Soc. 2004; 126(22):6848–6849. Lee EF, Sadowsky JD, Smith BJ, Czabotar PE, Peterson-Kaufman KJ, Colman PM, Gellman SH, Fairlie WD. Highresolution structural characterization of a helical α/β-peptide foldamer bound to the anti-apoptotic protein Bcl-xL. Angew Chem Int Edit. 2009; 48(24):4318–4322. Sadowsky JD, Schmitt MA, Lee H-S, Umezawa N, Wang S, Tomita Y, Gellman SH. Chimeric (α/β + α)-peptide ligands for the BH3-recognition cleft of Bcl-xL: Critical role of the molecular scaffold in protein surface recognition. J Am Chem Soc. 2005; 127(34):11966–11968. Sadowsky JD, Fairlie WD, Hadley EB, Lee H-S, Umezawa N, Nikolovska-Coleska Z, Wang S, Huang DCS, Tomita Y, Gellman SH. (α/β+α)-Peptide antagonists of BH3 domain/BclxL recognition: Toward general strategies for foldamer-based inhibition of proteinprotein interactions. J Am Chem Soc. 2007; 129(1):139–154. Koglin N, Zorn C, Beumer R, Cabrele C, Bubert C, Sewald N, Reiser O, Beck-Sickinger AG. Analogues of neuropeptide Y containing β-aminocyclopropane carboxylic acids are the shortest linear peptides that are selective for the Y1 receptor. Angew Chem Int Edit. 2003; 42(2):202–205. Baldauf C, Günther R, Hofmann H-J. Helix formation and folding in γ-peptides and their vinylogues. Helv Chim Acta. 2003; 86(7):2573–2588. Bouillère F, Thétiot-Laurent S, Kouklovsky C, Alezra V. Foldamers containing γ-amino acid residues or their analogues: structural features and applications. Amino Acids. 2011; 41(3):687–707. Karle IL, Pramanik A, Banerjee A, Bhattacharjya S, Balaram P. ω-Amino acids in peptide design. crystal structures and solution conformations of peptide helices containing a β-alanyl-γ-aminobutyryl segment. J Am Chem Soc. 1997; 119(39):9087–9095. Araghi RR, Koksch B. A helix-forming αβγ-chimeric peptide with catalytic activity: A hybrid peptide ligase. Chem Commun. 2011; 47(12):3544–3546. Araghi RR, Jäckel C, Cölfen H, Salwiczek M, Völkel A, Wagner SC, Wieczorek S, Baldauf C, Koksch B. A β/γ motif to mimic α-helical turns in proteins. ChemBioChem. 2010; 11(3):335–339. Semetey V, Rognan D, Hemmerlin C, Graff R, Briand J-P, Marraud M, Guichard G. Stable helical secondary structure in short-chain N,N’-linked oligoureas bearing proteinogenic side chains. Angew Chem Int Edit. 2002; 41(11):1973–1975. Fischer L, Claudon P, Pendem N, Miclet E, Didierjean C, Ennifar E, Guichard G. The canonical helix of urea oligomers at atomic resolution: Insights into folding-induced axial organization. Angew Chem Int Edit. 2010; 112(6):1085–1088. Violette A, Fournel S, Lamour K, Chaloin O, Frisch B, Briand JP, Monteil H, Guichard G. Mimicking helical antibacterial peptides with nonpeptidic folding oligomers. Chem Biol. 2006; 13(5):531–538. Claudon P, Violette A, Lamour K, Decossas M, Fournel S, Heurtault B, Godet J, Mély Y, Jamart-Grégoire B, Averlant-Petit M-C, Briand J-P, Duportail G, Monteil H, Guichard G. Consequences of isostructural main-chain modifications for the design of antimicrobial foldamers: Helical mimics of hostdefense peptides based on a heterogeneous amide/urea backbone. Angew Chem Int Edit. 2010; 49(2):333–336.