Heisenberg-type uncertainty inequalities for the Dunkl wavelet transform
Tóm tắt
The aim of this paper is to prove Heisenberg-type uncertainty inequalities for the Dunkl wavelet transform, involving the the time and scale dispersions, showing that, the Dunkl wavelet transform of a nonzero function cannot be concentrated both in time and in scale in the time-scale domain. These inequalities are the consequences of other stronger uncertainty inequalities, which are the local and logarithmic uncertainty inequalities for the Dunkl wavelet transform.
Tài liệu tham khảo
W. Beckner, Inequalities in Fourier analysis, Ann. of Math. 102 (1975), 159–182.
W. Beckner, Pitt’s inequality and the uncertainty principle, Proc. Amer. Math. Soc. 123 (1995), 1897–1905.
M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), 147–162.
D. L. Donoho and P. B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math. 49 (1989), 906–931.
C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), 16–183.
C. F. Dunkl, Integral kernels with reflection group invariance, Can. J. Math. 43 (1991), 1213–1227.
C. F. Dunkl, Hankel transforms associated to finite reflexion groups, Contemp. Math. 138 (1992), 123–138.
W. G. Faris, Inequalities and uncertainty inequalities, J. Math. Phys. 19 (1978), 461–466.
S. Ghobber and P. Jaming, Uncertainty principles for integral orperators, Studia Math. 220 (2014), 197–220.
S. Ghobber, Shapiro’s uncertainty principle in the Dunkl setting, Bull. Aust. Math. Soc. 92 (2015), 98–110.
S. Ghobber, Concentration operators in the Dunkl wavelet theory, Mediterr. J. Math. 14, 41 (2017).
D. V. Gorbachev, V. I. Ivanov and S. Yu. Tikhonov, Sharp Pitt inequality and logarithmic uncertainty principle for Dunkl transform in \(L^2\), J. Approx. Theory 202 (2016), 109–118.
I. Hirschman, A note on entropy, Amer. J. Math. 79 (1957) 152–156.
T. R. Johansen, Weigted inequalities and uncertainty principles for the \((k, a)\)-generalized Fourier transform, Internat. J. Math. 27 (2016), 1650019 (44 pages).
H. Lamouchi and S. Omri, Quantitative uncertainty principles for the short time Fourier transform and the radar ambiguity function, Indian J. Pure Appl. Math. 48 (2017), 147–161.
L. Lapointe and L. Vinet, Exact operator solution of the Calogero-Sutherland model, Comm. Math. Phys. 178 (1996), 425–452.
E. H. Lieb, Integral bounds for radar ambiguity functions and wigner distributions, J. Math. Phys. 31 (1990), 594–599.
H. Mejjaoli and N. Sraieb, Uncertainty principles for the continuous Dunkl Gabor transform and the Dunkl continuous wavelet transform, Mediterr. J. Math. 5 (2008), 443–466.
H. Mejjaoli and K. Trimèche, Time-frequency concentration, Heisenberg type uncertainty principles and localisation operators for the continuous Dunkl wavelet transform on \({\mathbb{R}}^d\), Mediterr. J. Math. 14, 146 (2017).
H. Mejjaoli and N. Sraieb, New uncertainty principles for the Dunkl wavelet transform, Int. J. Open Problems Complex Analysis, 13 (2020), 51–75.
H. Mejjaoli and N. Sraieb, Quantitative uncertainty principles for the Dunkl wavelet transform, Int. J. Open Problems Compt. Math. 13 (2020), 68–91.
A. P. Polychronakos, Exchange operator formalism for integrable systems of particles, Phys. Rev. Lett. 69 (1992), 703–705.
M. Rösler, An uncertainty principle for the Dunkl transform, Bull. Austral. Math. Soc. 59, (1999), 353–360.
S. Soltani, Pitt’s inequalities for the Dunkl transform on \({\mathbb{R}}^d\), Integral Transforms Spec. Funct. 25 (2014), 686–696.
K. Stempak, A note on Zemanian spaces, Extracta Math. 12 (1997), 33–40.
K. Trimèche, Inversion of the Dunkl intertwining operator and its dual using Dunkl wavelets, Conference on Special Functions (Tempe, AZ, 2000). Rocky Mountain J. Math. 32 (2002), 889–917.
E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Univ. Press, London and New York, 1927.