Heisenberg groups over composition algebras

Norbert Knarr1, Markus Johannes Stroppel1
1LExMath, Fakultät für Mathematik und Physik, Universität Stuttgart, Stuttgart, Germany

Tóm tắt

We solve the isomorphism problem for Heisenberg groups constructed over composition algebras, including the split case and characteristic two. We prove that two such groups are isomorphic if, and only if, the corresponding composition algebras are isomorphic as $$\mathbb Z$$ -algebras.

Tài liệu tham khảo

Albert, A.A.: Quasigroups I. Trans. Am. Math. Soc. 54, 507–519 (1943). doi:10.2307/1990259 Dembowski, P.: Finite Geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 44. Springer, Berlin (1968) Grundhöfer, T., Stroppel, M.J.: Automorphisms of Verardi groups: small upper triangular matrices over rings. Beitr. Algebra Geom. 49(1), 1–31 (2008). http://www.emis.de/journals/BAG/vol.49/no.1/1.html Gulde, M., Stroppel, M.J. Stabilizers of subspaces under similitudes of the Klein quadric, and automorphisms of Heisenberg algebras. Linear Algebra Appl. 437(4), 1132–1161 (2012). doi:10.1016/j.laa.2012.03.018. arXiv:1012.0502 Knarr, N., Stroppel, M.J.: Polarities and planar collineations of Moufang planes. Monatsh Math. 169(3–4), 383–395 (2013). doi:10.1007/s00605-012-0409-6 Knarr, N., Stroppel, M.J.: Heisenberg groups, semifields, and translation planes. Beitr. Algebra Geom. 56(1), 115–127 (2015). doi:10.1007/s13366-014-0193-7 Schafer, R.D.: An Introduction to Nonassociative Algebras, Pure and Applied Mathematics, vol. 22. Academic Press, New York (1966) Springer, T.A., Veldkamp, F.D.: Octonions, Jordan Algebras and Exceptional Groups. Springer Monographs in Mathematics, Springer, Berlin (2000) Stroppel, M.J.: The Klein quadric and the classification of nilpotent Lie algebras of class two. J. Lie Theory 18(2), 391–411 (2008). http://www.heldermann-verlag.de/jlt/jlt18/strola2e Zorn, M.: Theorie der alternativen Ringe. Abh. Math. Sem. Univ. Hamburg 8, 123–147 (1930). doi:10.1007/BF02940993