Hecke Algebras of Normalizers of Parabolic Subgroups

Algebras and Representation Theory - Tập 26 - Trang 1609-1639 - 2022
Thomas Gobet1, Ivan Marin2
1Institut Denis Poisson, CNRS UMR 7350, Faculté des Sciences et Techniques, Université de Tours, Tours, France
2Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Université de Picardie Jules Verne, Amiens, France

Tóm tắt

In the context of Hecke algebras of complex reflection groups, we prove that the generalized Hecke algebras of normalizers of parabolic subgroups are semidirect products, under suitable conditions on the parameters involved in their definition.

Tài liệu tham khảo

Ariki, S.: Representation theory of a Hecke algebra of G(r,p,n). J. Algebra 177, 164–185 (1995) Ariki, S., Koike, K.: A Hecke algebra of \((\mathbb {Z}/r\mathbb {Z})\wr \mathfrak {S}_{n}\) and construction of its irreducible representations. Adv. Math. 106, 216–243 (1994) Bannai, E.: Fundamental groups of the spaces of regular orbits of the finite unitary reflection groups of dimension 2. J. Math. Soc. Jpn. 28, 447–454 (1976) Bessis, D.: Finite complex reflection arrangement are K(π, 1). Ann. Math. 181(2), 809–904 (2015) Bessis, D., Michel, J.: Explicit presentations for exceptional braid groups. Exp. Math. 13, 257–266 (2004) Bonnafé, C., Dyer, M.: Semidirect product decomposition of Coxeter groups. Comm. Algebra 38(4), 1549–1574 (2010) Bremke, K., Malle, G.: Reduced words and a length function for G(e, 1,n). Indag. Math. (N.S.) 8(4), 453–469 (1997) Broué, M., Malle, G.: Zyklotomische Heckealgebren. In: Représentations Unipotentes Génériques et Blocs des Groupes Réductifs Finis, vol. 212, pp. 119–189. Astérisque (1993) Broué, M., Malle, G., Rouquier, R.: Complex reflection groups, braid groups, Hecke algebras. J. Reine Angew. Math. 500, 127–190 (1998) Chavli, E.: The BMR freeness conjecture for the tetrahedral and octahedral family. Comm. Algebra 46, 386–464 (2018) Chen, K.T.: Algebras of iterated path integrals and fundamental groups. Trans. Am. Math. Soc. 156, 359–379 (1971) Corran, R., Picantin, M.: A new Garside structure for braid groups of type (e,e,r). J. London Math. Soc. 84, 689–711 (2011) Digne, F., Gomi, Y.: Presentation of pure braid groups. J. Knot Theory Ramifications 10, 609–623 (2001) Gobet, T., Henderson, A., Marin, I.: Braid groups of normalizers of reflection subgroups. Annales de l’Institut Fourier. online first (2021) Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori-Hecke algebras. London Math. Soc. Monographes new series 21. Clarendon Press (2000) Howlett, R.B.: Normalizers of Parabolic Subgroups of Reflection Groups. J. London Math. Soc. 21, 62–80 (1980) Malle, G.: Splitting fields for extended complex reflection groups and Hecke algebras. Transform. Groups 11, 195–216 (2006) Marin, I.: The cubic Hecke algebra on at most 5 strands. J. Pure Appl. Algebra 216, 2754–2782 (2012) Marin, I.: The freeness conjecture for Hecke algebras of complex reflection groups, and the case of the Hessian group G26. J. Pure Appl. Algebra 218, 704–720 (2014) Marin, I.: Proof of the BMR freeness conjecture for G20 and G21. J. Symb. Comput. 92, 1–14 (2019) Marin, I.: Artin groups and Yokonuma–Hecke algebras. Int. Math. Res. Not. IMRN 2018, 4022–4062 (2018) Marin, I.: Lattice extensions of Hecke algebras. J. Algebra 503, 104–120 (2018) Marin, I., Pfeiffer, G.: The BMR freeness conjecture for the 2-reflection groups. Math. Comput. 86, 2005–2023 (2017) Marin, I., Wagner, E.: A cubic defining algebra for the Links-Gould polynomial. Adv. Math. 248, 1332–1365 (2013) Michel, J.: The development version of the CHEVIE package of GAP3. J. Algebra 435, 308–336 (2015) Taylor, D.E.: Reflection subgroups of finite complex reflection groups. J. Algebra 366, 218–234 (2012) Muraleedaran, K., Taylor, D.E.: Normalisers of parabolic subgroups in finite unitary reflection groups. J. Algebra 504, 479–505 (2018) Tsuchioka, S.: BMR freeness for icosahedral family. Exp. Math. 29, 234–245 (2020)