Heavy-traffic limits for waiting times in many-server queues with abandonment
Tóm tắt
Từ khóa
Tài liệu tham khảo
[2] Billingsley, P. (1968). <i>Convergence of Probability Measures</i>. Wiley, New York.
[4] Gurvich, I. and Whitt, W. (2009). Scheduling flexible servers with convex delay costs in many-server service-systems. <i>Manufacturing Service Oper. Management</i>. <b>11</b> 237–253.
[7] Mandelbaum, A., Massey, W. A., Reiman, M. I. and Stolyar, A. (1999). Waiting time asymptotics for time varying multiserver queues with abandonment and retrials. In <i>Proceedings of the Thirty-Seventh Annual Allerton Conference on Communication</i>, <i>Control and Computing</i> 1095–1104. Univ. Illinois, Urbana, IL.
[8] Mandelbaum, A., Massey, W. A., Reiman, M. I. and Stolyar, A. (1999). Waiting time asymptotics for multiserver, nonstationary Jackson networks with abandonment. Working paper, Bell Laboratories, Murray Hill, NJ.
[12] Puhalskii, A. A. The <i>M</i><sub><i>t</i></sub>/<i>M</i><sub><i>t</i></sub>/<i>K</i><sub><i>t</i></sub>+<i>M</i><sub><i>t</i></sub> queue in heavy traffic. Available at arXiv.org/abs/0807.4621.
[16] Whitt, W. (2002). Internet supplement to <i>Stochastic Process Limits</i>. Available at http://www.columbia.edu/~ww2040/supplement.html.
[5] Halfin, S. and Whitt, W. (1981). Heavy-traffic limits for queues with many exponential servers. <i>Oper. Res.</i> <b>29</b> 567–588.
[1] Armony, M. (2005). Dynamic routing in large-scale service systems with heterogeneous servers. <i>Queueing Syst.</i> <b>51</b> 287–329.
[3] Garnett, O., Mandelbaum, A. and Reiman, M. (2002). Designing a call center with impatient customers. <i>Manufacturing Service Oper. Management</i> <b>4</b> 208–227.
[6] Mandelbaum, A., Massey, W. A. and Reiman, M. I. (1998). Strong approximations for Markovian service networks. <i>Queueing Systems Theory Appl.</i> <b>30</b> 149–201.
[9] Pang, G., Talreja, R. and Whitt, W. (2007). Martingale proofs of many-server heavy-traffic limits for Markovian queues. <i>Probab. Surv.</i> <b>4</b> 193–267.
[10] Parthasarathy, K. R. (1967). <i>Probability Measures on Metric Spaces. Probability and Mathematical Statistics</i> <b>3</b> Academic Press, New York.
[11] Puhalskii, A. (1994). On the invariance principle for the first passage time. <i>Math. Oper. Res.</i> <b>19</b> 946–954.
[13] Puhalskii, A. A. and Reiman, M. I. (2000). The multiclass <i>GI</i>/<i>PH</i>/<i>N</i> queue in the Halfin–Whitt regime. <i>Adv. in Appl. Probab.</i> <b>32</b> 564–595.
[14] Whitt, W. (1980). Some useful functions for functional limit theorems. <i>Math. Oper. Res.</i> <b>5</b> 67–85.
[17] Whitt, W. (2004). Efficiency-driven heavy-traffic approximations for many-server queues with abandonments. <i>Management Sci.</i> <b>50</b> 1449–1461.
[18] Whitt, W. (2005). Engineering solution of a basic call-center model. <i>Management Sci.</i> <b>51</b> 221–235.
[19] Whitt, W. (2005). Heavy-traffic limits for the <i>G</i>/<i>H</i><sub>2</sub><sup>*</sup>/<i>n</i>/<i>m</i> queue. <i>Math. Oper. Res.</i> <b>30</b> 1–27.