Heavy traffic analysis for EDF queues with reneging
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] Asmussen, S. (2003). <i>Applied Probability and Queues</i>, 2nd ed. <i>Applications of Mathematics</i> (<i>New York</i>) <b>51</b>. Springer, New York.
[9] Ethier, S. N. and Kurtz, T. G. (1986). <i>Markov Processes</i>: <i>Characterization and Convergence</i>. Wiley, New York.
[15] Harrison, J. M. (1985). <i>Brownian Motion and Stochastic Flow Systems</i>. Wiley, New York.
[27] Lehoczky, J. P. (1996). Real-time queueing theory. In <i>Proc. of IEEE Real-Time Systems Symposium</i> 186–195. IEEE Computer Society Press, Los Alamitos, CA.
[29] Panwar, S. S. and Towsley, D. (1992). Optimality of the stochastic earliest deadline policy for the <i>G</i>/<i>M</i>/<i>c</i> queue serving customers with deadlines. In <i>Second ORSA Telecommunications Conference</i>. ORSA (Operations Research Society of America), Baltimore, MD.
[36] Whitt, W. (2002). <i>Stochastic-Process Limits</i>: <i>An Introduction to Stochastic-Process Limits and Their Application to Queues</i>. Springer, New York.
[3] Boots, N. and Tijms, H. (1999). A multiserver queueing system with impatient customers. <i>Management Science</i> <b>45</b> 444–448.
[4] Chen, H. and Mandelbaum, A. (1991). Stochastic discrete flow networks: Diffusion approximations and bottlenecks. <i>Ann. Probab.</i> <b>19</b> 1463–1519.
[5] Decreusefond, L. and Moyal, P. (2008). Fluid limit of a heavily loaded EDF queue with impatient customers. <i>Markov Process. Related Fields</i> <b>14</b> 131–158.
[6] Down, D., Gromoll, H. C. and Puha, A. (2009). Fluid limits for shortest remaining processing time queues. <i>Math. Operations Research</i> <b>4</b> 880–911.
[7] Doytchinov, B., Lehoczky, J. and Shreve, S. (2001). Real-time queues in heavy traffic with earliest-deadline-first queue discipline. <i>Ann. Appl. Probab.</i> <b>11</b> 332–378.
[8] Dupuis, P. and Ramanan, K. (1999). Convex duality and the Skorokhod problem. <i>Probab. Theory Related Fields</i> <b>115</b> 197–236.
[10] Gamarnik, D. and Zeevi, A. (2006). Validity of heavy traffic steady-state approximation in generalized Jackson networks. <i>Ann. Appl. Probab.</i> <b>16</b> 56–90.
[11] Gromoll, H. C. (2004). Diffusion approximation for a processor sharing queue in heavy traffic. <i>Ann. Appl. Probab.</i> <b>14</b> 555–611.
[12] Gromoll, H. C. and Kruk, Ł. (2007). Heavy traffic limit for a processor sharing queue with soft deadlines. <i>Ann. Appl. Probab.</i> <b>17</b> 1049–1101.
[13] Gromoll, H. C., Kruk, L. and Puha, A. Diffusion limits for shortest remaining processing time queues. Preprint, Dept. Mathematics, Univ. Virginia. Available at <a href="http://arxiv.org/abs/1005.1035">http://arxiv.org/abs/1005.1035</a>.
[14] Harrison, J. M. and Reiman, M. Reflected Brownian motion in an orthant. <i>Ann. Probab.</i> <b>9</b> 302–308.
[16] Iglehart, D. L. and Whitt, W. (1970). Multiple channel queues in heavy traffic. I. <i>Adv. in Appl. Probab.</i> <b>2</b> 150–177.
[17] Karatzas, I. and Shreve, S. E. (1988). <i>Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics</i> <b>113</b>. Springer, New York.
[18] Kaspi, H. and Ramanan, K. (2011). Law of large numbers limits for many-server queues. <i>Ann. Appl. Probab.</i> <b>21</b> 33–114.
[19] Kingman, J. F. C. (1961). The single server queue in heavy traffic. <i>Proc. Cambridge Philos. Soc.</i> <b>57</b> 902–904.
[20] Kingman, J. F. C. (1962). On queues in heavy traffic. <i>J. Roy. Statist. Soc. Ser. B</i> <b>24</b> 383–392.
[21] Kruk, Ł. (2007). Diffusion approximation for a <i>G</i>/<i>G</i>/1 EDF queue with unbounded lead times. <i>Ann. Univ. Mariae Curie-Skłodowska Math. A</i> <b>61</b> 51–90.
[22] Kruk, Ł., Lehoczky, J. P. and Shreve, S. (2003). Second order approximation for the customer time in queue distribution under the FIFO service discipline. <i>Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform.</i> <b>1</b> 37–48.
[23] Kruk, Ł., Lehoczky, J. P., Shreve, S. and Yeung, S.-N. (2004). Earliest-deadline-first service in heavy-traffic acyclic networks. <i>Ann. Appl. Probab.</i> <b>14</b> 1306–1352.
[24] Kruk, Ł., Lehoczky, J. P. and Shreve, S. (2006). Accuracy of state space collapse for earliest-deadline-first queues. <i>Ann. Appl. Probab.</i> <b>16</b> 516–561.
[25] Kruk, Ł., Lehoczky, J. P., Ramanan, K. and Shreve, S. E. (2007). An explicit formula for the Skorokhod map on [0, <i>a</i>]. <i>Ann. Probab.</i> <b>35</b> 1740–1768.
[26] Kruk, Ł., Lehoczky, J. P., Ramanan, K. and Shreve, S. (2008). Double Skorokhod map and reneging real-time queues. In <i>Markov Processes and Related Topics</i>: <i>A Festschrift for Thomas G. Kurtz. Inst. Math. Stat. Collect.</i> <b>4</b> 169–193. IMS, Beachwood, OH.
[28] Limic, V. (2000). On the behavior of LIFO preemptive resume queues in heavy traffic. <i>Electron. Comm. Probab.</i> <b>5</b> 13–27 (electronic).
[30] Prokhorov, Y. (1956). Convergence of random processes and limit theorems in probability theory. <i>Theory Probab. Appl.</i> <b>1</b> 157–214.
[31] Ramanan, K. and Reiman, M. I. (2003). Fluid and heavy traffic diffusion limits for a generalized processor sharing model. <i>Ann. Appl. Probab.</i> <b>13</b> 100–139.
[33] Ward, A. R. and Glynn, P. W. (2003). A diffusion approximation for a Markovian queue with reneging. <i>Queueing Syst.</i> <b>43</b> 103–128.
[34] Ward, A. R. and Glynn, P. W. (2005). A diffusion approximation for a <i>GI</i>/<i>GI</i>/1 queue with balking or reneging. <i>Queueing Syst.</i> <b>50</b> 371–400.
[35] Whitt, W. (1971). Weak convergence theorems for priority queues: Preemptive-resume discipline. <i>J. Appl. Probab.</i> <b>8</b> 74–94.