Heavy traffic analysis for EDF queues with reneging

Annals of Applied Probability - Tập 21 Số 2 - 2011
Łukasz Kruk1,2,3,4,5, John P. Lehoczky1,2,3,4,5, Kavita Ramanan1,2,3,4,5, Steven E. Shreve1,2,3,4,5
1Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
2Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.,
3Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
4INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSAW
5Maria Curie-Sklodowska University and Polish Academy of Sciences, Carnegie Mellon University, Brown University and Carnegie Mellon University

Tóm tắt

Từ khóa


Tài liệu tham khảo

[2] Billingsley, P. (1999). <i>Convergence of Probability Measures</i>, 2nd ed. Wiley, New York.

[1] Asmussen, S. (2003). <i>Applied Probability and Queues</i>, 2nd ed. <i>Applications of Mathematics</i> (<i>New York</i>) <b>51</b>. Springer, New York.

[9] Ethier, S. N. and Kurtz, T. G. (1986). <i>Markov Processes</i>: <i>Characterization and Convergence</i>. Wiley, New York.

[15] Harrison, J. M. (1985). <i>Brownian Motion and Stochastic Flow Systems</i>. Wiley, New York.

[27] Lehoczky, J. P. (1996). Real-time queueing theory. In <i>Proc. of IEEE Real-Time Systems Symposium</i> 186–195. IEEE Computer Society Press, Los Alamitos, CA.

[29] Panwar, S. S. and Towsley, D. (1992). Optimality of the stochastic earliest deadline policy for the <i>G</i>/<i>M</i>/<i>c</i> queue serving customers with deadlines. In <i>Second ORSA Telecommunications Conference</i>. ORSA (Operations Research Society of America), Baltimore, MD.

[32] Ross, S. M. (1983). <i>Stochastic Processes</i>. Wiley, New York.

[36] Whitt, W. (2002). <i>Stochastic-Process Limits</i>: <i>An Introduction to Stochastic-Process Limits and Their Application to Queues</i>. Springer, New York.

[3] Boots, N. and Tijms, H. (1999). A multiserver queueing system with impatient customers. <i>Management Science</i> <b>45</b> 444–448.

[4] Chen, H. and Mandelbaum, A. (1991). Stochastic discrete flow networks: Diffusion approximations and bottlenecks. <i>Ann. Probab.</i> <b>19</b> 1463–1519.

[5] Decreusefond, L. and Moyal, P. (2008). Fluid limit of a heavily loaded EDF queue with impatient customers. <i>Markov Process. Related Fields</i> <b>14</b> 131–158.

[6] Down, D., Gromoll, H. C. and Puha, A. (2009). Fluid limits for shortest remaining processing time queues. <i>Math. Operations Research</i> <b>4</b> 880–911.

[7] Doytchinov, B., Lehoczky, J. and Shreve, S. (2001). Real-time queues in heavy traffic with earliest-deadline-first queue discipline. <i>Ann. Appl. Probab.</i> <b>11</b> 332–378.

[8] Dupuis, P. and Ramanan, K. (1999). Convex duality and the Skorokhod problem. <i>Probab. Theory Related Fields</i> <b>115</b> 197–236.

[10] Gamarnik, D. and Zeevi, A. (2006). Validity of heavy traffic steady-state approximation in generalized Jackson networks. <i>Ann. Appl. Probab.</i> <b>16</b> 56–90.

[11] Gromoll, H. C. (2004). Diffusion approximation for a processor sharing queue in heavy traffic. <i>Ann. Appl. Probab.</i> <b>14</b> 555–611.

[12] Gromoll, H. C. and Kruk, Ł. (2007). Heavy traffic limit for a processor sharing queue with soft deadlines. <i>Ann. Appl. Probab.</i> <b>17</b> 1049–1101.

[13] Gromoll, H. C., Kruk, L. and Puha, A. Diffusion limits for shortest remaining processing time queues. Preprint, Dept. Mathematics, Univ. Virginia. Available at <a href="http://arxiv.org/abs/1005.1035">http://arxiv.org/abs/1005.1035</a>.

[14] Harrison, J. M. and Reiman, M. Reflected Brownian motion in an orthant. <i>Ann. Probab.</i> <b>9</b> 302–308.

[16] Iglehart, D. L. and Whitt, W. (1970). Multiple channel queues in heavy traffic. I. <i>Adv. in Appl. Probab.</i> <b>2</b> 150–177.

[17] Karatzas, I. and Shreve, S. E. (1988). <i>Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics</i> <b>113</b>. Springer, New York.

[18] Kaspi, H. and Ramanan, K. (2011). Law of large numbers limits for many-server queues. <i>Ann. Appl. Probab.</i> <b>21</b> 33–114.

[19] Kingman, J. F. C. (1961). The single server queue in heavy traffic. <i>Proc. Cambridge Philos. Soc.</i> <b>57</b> 902–904.

[20] Kingman, J. F. C. (1962). On queues in heavy traffic. <i>J. Roy. Statist. Soc. Ser. B</i> <b>24</b> 383–392.

[21] Kruk, Ł. (2007). Diffusion approximation for a <i>G</i>/<i>G</i>/1 EDF queue with unbounded lead times. <i>Ann. Univ. Mariae Curie-Skłodowska Math. A</i> <b>61</b> 51–90.

[22] Kruk, Ł., Lehoczky, J. P. and Shreve, S. (2003). Second order approximation for the customer time in queue distribution under the FIFO service discipline. <i>Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform.</i> <b>1</b> 37–48.

[23] Kruk, Ł., Lehoczky, J. P., Shreve, S. and Yeung, S.-N. (2004). Earliest-deadline-first service in heavy-traffic acyclic networks. <i>Ann. Appl. Probab.</i> <b>14</b> 1306–1352.

[24] Kruk, Ł., Lehoczky, J. P. and Shreve, S. (2006). Accuracy of state space collapse for earliest-deadline-first queues. <i>Ann. Appl. Probab.</i> <b>16</b> 516–561.

[25] Kruk, Ł., Lehoczky, J. P., Ramanan, K. and Shreve, S. E. (2007). An explicit formula for the Skorokhod map on [0, <i>a</i>]. <i>Ann. Probab.</i> <b>35</b> 1740–1768.

[26] Kruk, Ł., Lehoczky, J. P., Ramanan, K. and Shreve, S. (2008). Double Skorokhod map and reneging real-time queues. In <i>Markov Processes and Related Topics</i>: <i>A Festschrift for Thomas G. Kurtz. Inst. Math. Stat. Collect.</i> <b>4</b> 169–193. IMS, Beachwood, OH.

[28] Limic, V. (2000). On the behavior of LIFO preemptive resume queues in heavy traffic. <i>Electron. Comm. Probab.</i> <b>5</b> 13–27 (electronic).

[30] Prokhorov, Y. (1956). Convergence of random processes and limit theorems in probability theory. <i>Theory Probab. Appl.</i> <b>1</b> 157–214.

[31] Ramanan, K. and Reiman, M. I. (2003). Fluid and heavy traffic diffusion limits for a generalized processor sharing model. <i>Ann. Appl. Probab.</i> <b>13</b> 100–139.

[33] Ward, A. R. and Glynn, P. W. (2003). A diffusion approximation for a Markovian queue with reneging. <i>Queueing Syst.</i> <b>43</b> 103–128.

[34] Ward, A. R. and Glynn, P. W. (2005). A diffusion approximation for a <i>GI</i>/<i>GI</i>/1 queue with balking or reneging. <i>Queueing Syst.</i> <b>50</b> 371–400.

[35] Whitt, W. (1971). Weak convergence theorems for priority queues: Preemptive-resume discipline. <i>J. Appl. Probab.</i> <b>8</b> 74–94.

[37] Zhang, J. and Zwart, B. (2008). Steady state approximations of limited processor sharing queues in heavy traffic. <i>Queueing Syst.</i> <b>60</b> 227–246.