Heavy metals in urban road dusts from Kolkata and Bengaluru, India: implications for human health
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahmed, F., & Ishiga, H. (2006). Trace metal concentrations in street dusts of Dhaka city, Bangladesh. Atmospheric Environment, 40(21), 3835–3844. https://doi.org/10.1016/j.atmosenv.2006.03.004.
anon. (2015). Bangalore ranks 12th in list of world’s top 20 tech-rich cities: The Economic Times. Economic Times-India Times. https://economictimes.indiatimes.com/news/economy/indicators/bangalore-ranks-12th-in-list-of-worlds-top-20-tech-rich-cities/articleshow/47958523.cms. Accessed 4 April 2019.
anon. (2018). Kolkata tops in public transport: Study|India News—Times of India. The Times of India. https://timesofindia.indiatimes.com/india/kolkata-tops-in-public-transport-study/articleshow/66476386.cms. Accessed 3 April 2019.
anon. (2019a). Kolkata climate: Average temperature, weather by month, Kolkata weather averages—Climate-Data.org. Climate-Data.Org. https://en.climate-data.org/asia/india/west-bengal/kolkata-2826/. Accessed 4 April 2019.
anon. (2019b). Bengaluru climate: Average temperature, weather by month, Bengaluru weather averages—Climate-Data.org. Climate-Data.Org. https://en.climate-data.org/asia/india/karnataka/bengaluru-4562/. Accessed 4 April 2019.
Atiemo, S. M., Ofosu, F. G., Aboh, I. J. K., & Oppon, O. C. (2012). Levels and sources of heavy metal contamination in road dust in selected major highways of Accra, Ghana. X-Ray Spectrometry, 41(2), 105–110. https://doi.org/10.1002/xrs.2374.
Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123(1), 95–105. https://doi.org/10.1016/S0269-7491(02)00337-8.
Census of India. (2011). Provisional population totals, census of India 2011 urban agglomerations/cities having population 1 lakh and above District Name of Urban Code Agglomeration/City Provisional Population Totals, Census of India 2011 Urban Agglomerations/Cities havin.
Chatterjee, A., & Banerjee, R. N. (1999). Determination of lead and other metals in a residential area of greater Calcutta. Science of the Total Environment, 227(2–3), 175–185. https://doi.org/10.1016/S0048-9697(99)00026-1.
Chaudhuri, A. (2012). The city that got left behind—Reviving Kolkata. The Economist. https://www.economist.com/asia/2012/01/07/the-city-that-got-left-behind. Accessed 4 April 2019.
Checkoway, H., Heyer, N. J., Seixas, N. S., Welp, E. A. E., Demers, P. A., Hughes, J. M., et al. (1997). Dose-response associations of silica with nonmalignant respiratory disease and lung cancer mortality in the diatomaceous earth industry. American Journal of Epidemiology, 145(8), 680–688. https://doi.org/10.1093/aje/145.8.680.
Chen, P., Bi, X., Zhang, J., Wu, J., & Feng, Y. (2015). Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China. Particuology, 20, 104–109. https://doi.org/10.1016/J.PARTIC.2014.04.020.
Chen, H., Lu, X., Li, L. Y., Gao, T., & Chang, Y. (2014). Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Science of the Total Environment, 484(1), 27–35. https://doi.org/10.1016/j.scitotenv.2014.03.026.
Chutke, N. L., Ambulkar, M. N., Aggarwal, A. L., & Garg, A. N. (1994). Instrumental neutron activation analysis of ambient air dust particulates from metropolitan cities in India. Environmental Pollution, 85(1), 67–76. https://doi.org/10.1016/0269-7491(94)90239-9.
Cox, W. (2019). Demographia world urban areas: 15 th annual addition. Demographia, 15th edn. NewGeography.com. http://www.demographia.com/db-worldua.pdf.
Das, A., Krishna, K., Kumar, R., Das, A., Sengupta, S., & Ghosh, J. G. (2016). Tracing lead contamination in foods in the city of Kolkata, India. Environmental Science and Pollution Research, 23(22), 22454–22466. https://doi.org/10.1007/s11356-016-7409-3.
Denys, S., Caboche, J., Tack, K., Rychen, G., Wragg, J., Cave, M., et al. (2012). In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science and Technology, 46(11), 6252–6260. https://doi.org/10.1021/es3006942.
Du, Y., Gao, B., Zhou, H., Ju, X., Hao, H., & Yin, S. (2013). Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environmental Sciences, 18, 299–309. https://doi.org/10.1016/j.proenv.2013.04.039.
Duan, Z., Wang, J., Xuan, B., Cai, X., & Zhang, Y. (2018). Spatial distribution and health risk assessment of heavy metals in urban road dust of Guiyang, China.
Duong, T. T. T., & Lee, B. K. (2011). Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management, 92(3), 554–562. https://doi.org/10.1016/j.jenvman.2010.09.010.
Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39(25), 4501–4512. https://doi.org/10.1016/j.atmosenv.2005.03.026.
Fujiwara, F., Rebagliati, R. J., Marrero, J., Gómez, D., & Smichowski, P. (2011). Antimony as a traffic-related element in size-fractionated road dust samples collected in Buenos Aires. Microchemical Journal, 97(1), 62–67. https://doi.org/10.1016/j.microc.2010.05.006.
Gope, M., Masto, R. E., George, J., Hoque, R. R., & Balachandran, S. (2017). Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2017.01.008.
Gunawardana, C., Goonetilleke, A., Egodawatta, P., Dawes, L., & Kokot, S. (2012). Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere, 87(2), 163–170. https://doi.org/10.1016/j.chemosphere.2011.12.012.
Gupta, A. K., Karar, K., & Srivastava, A. (2007). Chemical mass balance source apportionment of PM10and TSP in residential and industrial sites of an urban region of Kolkata, India. Journal of Hazardous Materials, 142(1–2), 279–287. https://doi.org/10.1016/j.jhazmat.2006.08.013.
Hamilton, E. M., Barlow, T. S., Gowing, C. J. B., & Watts, M. J. (2015). Bioaccessibility performance data for fifty-seven elements in guidance material BGS 102. Microchemical Journal, 123, 131–138. https://doi.org/10.1016/j.microc.2015.06.001.
Herath, D., Pitawala, A., & Gunatilake, J. (2016). Heavy metals in road deposited sediments and road dusts of Colombo Capital, Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 44(2), 193. https://doi.org/10.4038/jnsfsr.v44i2.8000.
Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H., & Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159(5), 1215–1221. https://doi.org/10.1016/j.envpol.2011.01.037.
Huang, M., Wang, W., Leung, H., Yu Chan, C., Keung Liu, W., Hung Wong, M., et al. (2012). Mercury levels in road dust and household TSP/PM2.5related to concentrations in hair in Guangzhou, China. Ecotoxicology and Environmental Safety, 81, 27–35. https://doi.org/10.1016/j.ecoenv.2012.04.010.
Juhasz, A. L., Weber, J., & Smith, E. (2011). Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils. Journal of Hazardous Materials, 186(2–3), 1870–1879. https://doi.org/10.1016/J.JHAZMAT.2010.12.095.
Karar, K., & Gupta, A. K. (2006). Seasonal variations and chemical characterization of ambient PM10at residential and industrial sites of an urban region of Kolkata (Calcutta), India. Atmospheric Research, 81(1), 36–53. https://doi.org/10.1016/j.atmosres.2005.11.003.
Keuken, M. P., Moerman, M., Voogt, M., Blom, M., Weijers, E. P., Röckmann, T., et al. (2013). Source contributions to PM2.5 and PM10 at an urban background and a street location. Atmospheric Environment, 71, 26–35. https://doi.org/10.1016/J.ATMOSENV.2013.01.032.
Khairy, M. A., Barakat, A. O., Mostafa, A. R., & Wade, T. L. (2011). Multielement determination by flame atomic absorption of road dust samples in Delta Region, Egypt. Microchemical Journal, 97(2), 234–242. https://doi.org/10.1016/j.microc.2010.09.012.
Klein, D. H., & Russell, P. (1973). Heavy metals: fallout around a power plant. Environmental Science and Technology, 7(4), 357–358. https://doi.org/10.1021/es60076a004.
Kong, S., Lu, B., Ji, Y., Zhao, X., Chen, L., Li, Z., et al. (2011). Levels, risk assessment and sources of PM10 fraction heavy metals in four types dust from a coal-based city. Microchemical Journal, 98(2), 280–290. https://doi.org/10.1016/J.MICROC.2011.02.012.
Kumar, M., Furumai, H., Kurisu, F., & Kasuga, I. (2013). Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting. Geoderma, 211–212, 8–17. https://doi.org/10.1016/j.geoderma.2013.07.004.
Kumar, A. V., Patil, R. S., & Nambi, K. S. V. (2001). Source apportionment of suspended particulate matter at two traffic junctions in Mumbai, India. Atmospheric Environment, 35(25), 4245–4251. https://doi.org/10.1016/S1352-2310(01)00258-8.
Li, H., Shi, A., & Zhang, X. (2015). Particle size distribution and characteristics of heavy metals in road-deposited sediments from Beijing Olympic Park. Journal of Environmental Sciences (China), 32, 228–237. https://doi.org/10.1016/j.jes.2014.11.014.
Liu, A., Liu, L., Li, D., & Guan, Y. (2015). Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse. Science of the Total Environment, 515–516, 20–29. https://doi.org/10.1016/j.scitotenv.2015.02.026.
Liu, E., Yan, T., Birch, G., & Zhu, Y. (2014). Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Science of the Total Environment, 476–477, 522–531. https://doi.org/10.1016/j.scitotenv.2014.01.055.
Lorenzi, D., Entwistle, J. A., Cave, M., & Dean, J. R. (2011). Determination of polycyclic aromatic hydrocarbons in urban street dust: Implications for human health. Chemosphere, 83(7), 970–977. https://doi.org/10.1016/j.chemosphere.2011.02.020.
Lu, X., Wang, L., Li, L. Y., Lei, K., Huang, L., & Kang, D. (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal of Hazardous Materials, 173(1–3), 744–749. https://doi.org/10.1016/j.jhazmat.2009.09.001.
Men, C., Liu, R., Wang, Q., Guo, L., & Shen, Z. (2018a). The impact of seasonal varied human activity on characteristics and sources of heavy metals in metropolitan road dusts. Science of the Total Environment, 637–638, 844–854. https://doi.org/10.1016/j.scitotenv.2018.05.059.
Men, C., Liu, R., Xu, F., Wang, Q., Guo, L., & Shen, Z. (2018b). Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Science of the Total Environment, 612, 138–147. https://doi.org/10.1016/J.SCITOTENV.2017.08.123.
Moudgal, S. (2018). Bengaluru worse than Delhi in pollution levels: CPCB|Bengaluru News—Times of India. Times of India. https://m.timesofindia.com/city/bengaluru/bengaluru-worse-than-delhi-in-pollution-levels-cpcb/amp_articleshow/65380612.cms. Accessed 4 April 2019.
Mummullage, S., Egodawatta, P., Ayoko, G. A., & Goonetilleke, A. (2016). Use of physicochemical signatures to assess the sources of metals in urban road dust. Science of the Total Environment, 541, 1303–1309. https://doi.org/10.1016/j.scitotenv.2015.10.032.
Najmeddin, A., Keshavarzi, B., Moore, F., & Lahijanzadeh, A. (2017). Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Environmental Geochemistry and Health, 40(4), 1187–1208. https://doi.org/10.1007/s10653-017-0035-2.
Padoan, E., Romè, C., & Ajmone-Marsan, F. (2017). Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Science of the Total Environment, 601–602, 89–98. https://doi.org/10.1016/j.scitotenv.2017.05.180.
Pan, H., Lu, X., & Lei, K. (2017). A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Science of the Total Environment, 609, 1361–1369. https://doi.org/10.1016/j.scitotenv.2017.08.004.
Pathak, A. K., Yadav, S., Kumar, P., & Kumar, R. (2013). Source apportionment and spatial-temporal variations in the metal content of surface dust collected from an industrial area adjoining Delhi, India. Science of the Total Environment, 443, 662–672. https://doi.org/10.1016/j.scitotenv.2012.11.030.
PNUD. (2009). World Urbanization Prospects: The 2009 Revision—Urban and rural population, 55. http://knoema.com/UNWUP2009RURP/world-urbanization-prospects-the-2009-revision-urban-and-rural-population-march-2010.
Putaud, J. P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M. C., Decesari, S., et al. (2004). A European aerosol phenomenology—2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 38(16), 2579–2595. https://doi.org/10.1016/j.atmosenv.2004.01.041.
Querol, X., Sánchez de la Campa, A. M., Alastuey, A., González-Castanedo, Y., Fernández-Camacho, R., Pio, C., et al. (2010). High concentrations of heavy metals in PM from ceramic factories of Southern Spain. Atmospheric Research, 96(4), 633–644. https://doi.org/10.1016/j.atmosres.2010.02.011.
Rajaram, B. S., Suryawanshi, P. V., Bhanarkar, A. D., & Rao, C. V. C. (2014). Heavy metals contamination in road dust in Delhi city, India. Environmental Earth Sciences, 72(10), 3929–3938. https://doi.org/10.1007/s12665-014-3281-y.
Reddy, M. S., Basha, S., Joshi, H. V., & Jha, B. (2005). Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion. Journal of Hazardous Materials, 123(1–3), 242–249. https://doi.org/10.1016/J.JHAZMAT.2005.04.008.
Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. Treatise on Geochemistry, 3, 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.
Shankar, B. (2009). Chromium pollution in the ground waters of an industrial area in Bangalore, India. Environmental Engineering Science. https://doi.org/10.1089/ees.2008.0043.
Shi, D., & Lu, X. (2018). Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: A case study of Xi’an, China. Science of the Total Environment, 636, 1211–1218. https://doi.org/10.1016/j.scitotenv.2018.04.385.
Singh, A. K. (2011). Elemental chemistry and geochemical partitioning of heavy metals in road dust from Dhanbad and Bokaro regions, India. Environmental Earth Sciences, 62(7), 1447–1459. https://doi.org/10.1007/s12665-010-0630-3.
SNIFFER. (2007). Environmental Legislation and Human Health: Guidance for Assessing Risk (August). http://www.sniffer.org.uk/files/1613/4183/7999/UKCC02_guidance.pdf.
Thorpe, A., & Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of the Total Environment, 400(1–3), 270–282. https://doi.org/10.1016/J.SCITOTENV.2008.06.007.
Turner, A. (2016). Heavy metals, metalloids and other hazardous elements in marine plastic litter. Marine Pollution Bulletin, 111(1–2), 136–142. https://doi.org/10.1016/J.MARPOLBUL.2016.07.020.
USEPA. (2002). Supplemental guidance for developing soil screening levels for superfund sites. Office of Solid Waste and Emergency Response (OSWER) (December). https://nepis.epa.gov/Exe/ZyPDF.cgi/91003IJK.PDF?Dockey=91003IJK.PDF.
USEPA. (2007). Estimation of relative bioavailability of lead in soil and soil-like materials using in vivo and in vitro methods Office of Solid Waste and Emergency Response. Environmental Protection (May). https://doi.org/10.1016/j.jphotochem.2008.02.027.