Heavy metal toxicity in earthworms and its environmental implications: A review
Tài liệu tham khảo
Adamowicz, 2001, Morphology and phagocytotic activity of coelomocytes Dendrobaena veneta (Lumbricidae), Zool. Pol., 46, 91
Aguzie, 2021, Behavioral and oxidative stress responses of earthworm, nsukkadrilus mbae (segun 1976), exposed to lead and cadmium: a preliminary investigation, Soil Sediment Contam., 30, 569, 10.1080/15320383.2021.1873912
Alengebawy, 2021, Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications, Toxics, 9, 42, 10.3390/toxics9030042
Ali, 2019, Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation, J Chem., 10.1155/2019/6730305
Al-Maliki, 2021, Earthworms and eco-consequences: considerations to soil biological indicators and plant function: a review, Acta Ecol. Sin., 41, 512, 10.1016/j.chnaes.2021.02.003
Andre, 2010, Metal bioaccumulation and cellular fractionation in an epigeic earthworm (Lumbricus rubellus): the interactive influences of population exposure histories, site specific geochemistry and mitochondrial genotype, Soil Biol. Biochem., 42, 1566, 10.1016/j.soilbio.2010.05.029
Baily, 1996, Fish models for environmental carcinogenesis in the rainbow trout, Environ. Health Perspect., 104, 5
Balali-Mood, 2021, Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic, Front. Pharmacol., 12, 10.3389/fphar.2021.643972
Bartlett, 2010, A critical review of current methods in earthworm ecology: from individuals to populations, Eur. J. Soil Biol., 46, 67, 10.1016/j.ejsobi.2009.11.006
Bindesbol, 2009, Impacts of heavy metals, polyaromatic hydrocarbons, and pesticides on freeze tolerance of the earthworm Dendrobaena octaedra, Environ. Toxicol. Chem., 28, 2341, 10.1897/09-078.1
Borsetti, 2007, The thiol:disulfide oxidoreductase DsbB mediates the oxidizing effects of the toxic metalloid tellurite (TeO32-) on the plasma membrane redox system of the facultative phototroph Rhodobacter capsulatus, J. Bacteriol., 189, 851, 10.1128/JB.01080-06
Bouche, 1977, Strategies lombriciennes,”, 122
Brussaard, 1997, Biodiversity and ecosystem functioning in soil, Ambio, 26, 563
Calisi, 2014, Metallothionein induction in the coelomic fluid of the earthworm Lumbricus terrestris following heavy metal exposure: a short report, Biomed. Res. Int., 2014, 10.1155/2014/109386
Cao, 2017, Toxic responses of cytochrome P450 sub-enzyme activities to heavy metals exposure in soil and correlation with their bioaccumulation in Eisenia fetida, Ecotoxicol. Environ. Saf., 144, 158, 10.1016/j.ecoenv.2017.06.023
Capdevila, 2012, State-of-the-art of metallothioneins at the beginning of the 21st century, Coord. Chem. Rev., 256, 46, 10.1016/j.ccr.2011.07.006
Chao, 2016, Biological responses in the earthworm Eisenia fetida exposed to soils near a typical lead acid battery plant, Soil Sediment Contam., 25, 573, 10.1080/15320383.2016.1184619
Cigerci, 2016, Genotoxicity assessment of cobalt chloride in Eisenia hortensis earthworms coelomocytes by comet assay and micronucleus test, Chemosphere, 144, 754, 10.1016/j.chemosphere.2015.09.053
Cui, 2022, Adverse effects of microplastics on earthworms: a critical review, Sci. Total Environ., 850, 10.1016/j.scitotenv.2022.158041
De Flora, 1991, Genotoxic, carcinogenic and teratogenic hazards in the marine environment, with special reference to the mediterranien sea, Mutat. Res., 258, 285, 10.1016/0165-1110(91)90013-L
Dedeke, 2018, Impact of heavy metal bioaccumulation on antioxidant activities and DNA profile in two earthworm species and freshwater prawn from Ogun River, Sci. Total Environ., 624, 576, 10.1016/j.scitotenv.2017.12.037
Demuynck, 2014, Effects of field metal-contaminated soils submitted to phytostabilisation and fly ash-aided phytostabilisation on the avoidance behavior of the earthworm Eisenia fetida, Ecotoxicol. Environ. Saf., 107, 170, 10.1016/j.ecoenv.2014.05.011
Dominguez-Crespo, 2012, Effect of the heavy metals Cu, Ni, Cd and Zn on the growth and reproduction of epigeic earthworms (E. fetida) during the vermistabilization of municipal sewage sludge, Water Air Soil Pollut., 223, 915, 10.1007/s11270-011-0913-7
Duo, 2019, Ecotoxicological responses of the earthworm Eisenia fetida to EDTA addition under turfgrass growing conditions, Chemosphere, 220, 56, 10.1016/j.chemosphere.2018.12.106
Dzul-Caamal, 2020, Distribution of heavy metals in crop soils from an agricultural region of the Yucatan Peninsula and biochemical changes in earthworm Eisenia foetida exposed experimentally, Environ. Monit. Assess., 192, 10.1007/s10661-020-08273-7
Ecimovic, 2018, Acute toxicity of selenate and selenite and their impacts on oxidative status, efflux pump activity, cellular and genetic parameters in earthworm Eisenia andrei, Chemosphere, 212, 307, 10.1016/j.chemosphere.2018.08.095
Eijsackers, 2010, Earthworms as colonisers: primary colonisation of contaminated land, and sediment and soil waste deposits, Sci. Total Environ., 408, 1759, 10.1016/j.scitotenv.2009.12.046
Engwa, 2019, 1
Foster, 2011, Promiscuity and preferences of metallothioneins: the cell rules, BMC Biol., 9, 1, 10.1186/1741-7007-9-25
Fourie, 2007, The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay, Ecotoxicol. Environ. Saf., 67, 361, 10.1016/j.ecoenv.2006.10.005
Frenzilli, 2001, DNA integrity and total oxiradical scavenging capacity in the mediterranean mussel, Mytilus galloprovinciales: A field study in a highly eutrophicated coastal lagoon, Aquat. Toxicol., 53, 19, 10.1016/S0166-445X(00)00159-4
Gao, 2015, Biomarker analysis of combined oxytetracycline and zinc pollution in earthworms (Eisenia fetida), Chemosphere, 139, 229, 10.1016/j.chemosphere.2015.06.059
Garg, 2009, Effect of heavy metal supplementation on local (Allolobophora parva) and exotic (Eisenia fetida) earthworm species: A comparative study, J. Environ. Sci. Health A, 44, 1025, 10.1080/10934520902996997
Guo, 2020, Impacts induced by the combination of earthworms, residue and tillage on soil organic carbon dynamics using 13C labelling technique and X-ray computed tomography, Soil Tillage Res., 205
Gupta, 2006, The comparative effects of metals on the hatching of earthworm cocoons, Altern. Lab. Anim., 34, 491, 10.1177/026119290603400506
Hallam, 2020, Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity, Biol. Fertil. Soils, 56, 607, 10.1007/s00374-020-01432-5
Heredia Rivera, 2020, Characterisation by excitation-emission matrix fluorescence spectroscopy of pigments in mucus secreted of earthworm eisenia foetida exposed to lead, J. Fluoresce, 30, 725, 10.1007/s10895-020-02533-y
Hirano, 2006, Fragmentation of the DNA repair enzyme, OGG1, in mouse nonparenchymal liver cells by arsenic compounds, Genes Environ., 28, 62, 10.3123/jemsge.28.62
Hirano, 2010, Heavy metal-induced oxidative DNA damage in earthworms: a review, Appl. Environ. Soil Sci., vol 2010, 10.1155/2010/726946
Hirano, 2011, Earthworms and soil pollutants, Sensors, 11, 11157, 10.3390/s111211157
Hirano, 1997, Inhibition of 8- hydroxyguanine repair in testes after administration of cadmium chloride to GSH-depleted rats, Toxicol. Appl. Pharmacol., 147, 9, 10.1006/taap.1997.8260
Hockner, 2020, Cadmium-related effects on cellular immunity comprises altered metabolism in earthworm coelomocytes, Int. J. Mol. Sci., 21, 599, 10.3390/ijms21020599
Homa, 2010, Metal-specific effects on metallothionein gene induction and riboflavin content in coelomocytes of Allolobophora chlorotica, Ecotoxicol. Environ. Saf., 73, 1937, 10.1016/j.ecoenv.2010.07.001
Homa, 2016, Metallothionein 2 and heat shock protein 72 protect Allolobophora chlorotica from cadmium but not nickel or copper exposure: body malformation and coelomocyte functioning, Arch. Environ. Contam. Toxicol., 71, 267, 10.1007/s00244-016-0276-6
Honsi, 2003, Lysosomal fragility in earthworms (Eisenia veneta) exposed to heavy metal contaminated soils from two abandoned pyrite ore mines in Southern Norway, Water Air Soil Pollut., 142, 27, 10.1023/A:1022003809634
Hu, 2016, Antioxidant and gene expression responses of Eisenia fetida following repeated exposure to BDE209 and Pb in a soil-earthworm system, Sci. Total Environ., 556, 163, 10.1016/j.scitotenv.2016.02.194
Huang, 2021, Impact of soil metals on earthworm communities from the perspectives of earthworm ecotypes and metal bioaccumulation, J. Hazard. Mater., 406, 10.1016/j.jhazmat.2020.124738
Igiri, 2018, Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review, J Toxicol., vol. 2018, 10.1155/2018/2568038
Jatwani, 2016, Effects of Hg/Co toxicity in soil on biomolecules of earthworm, Eisenia fetida, Procedia Environ. Sci., 35, 450, 10.1016/j.proenv.2016.07.028
Julius, 2015, Heavy metal accumulation and biochemical evaluation of earthworms from sawmills in Abeokuta, South-Western Nigeria, Rev. Biol. Trop., 63, 1213
Kadhim, 1984, The detection of mutagenic chemicals in the tissues of shellfish exposed to oil pollution, Mutat. Res., 136, 93, 10.1016/0165-1218(84)90149-6
Kamitani, 2007, Species-specific heavy metal accumulation patterns of earthworms on a floodplain in Japan, Ecotoxicol. Environ. Saf., 66, 82, 10.1016/j.ecoenv.2005.10.009
Kılıc, 2011, Histopathological and biochemical alterations of the earthworm (Lumbricus Terrestris) as biomarker of soil pollution along Porsuk River Basin (Turkey), Chemosphere, 83, 1175, 10.1016/j.chemosphere.2010.12.091
Kowald, 2016, Earthworm Lumbricus rubellus MT-2: metal binding and protein folding of a true cadmium-MT, Int. J. Mol. Sci., 17, 65, 10.3390/ijms17010065
Kumar, 2022, Eisenia fetida as protein source for growth enhancement of Heteropneustes fossilis, Egypt. J. Aquat. Biol. Fish., 26, 577, 10.21608/ejabf.2022.234553
Kumar, 2020, Earthworms for eco-friendly resource efficient agriculture, 47
Kumar, 2022, Insecticide-tolerant bacterial population in eisenia fetida's gut and vermicast exposed to chlorantraniliprole and fipronil, Appl. Biol. Sci., 24, 273
Langdon, 2003, Interactions between earthworms and arsenic in the soil environment: a review, Environ. Pollut., 124, 361, 10.1016/S0269-7491(03)00047-2
Lapinski, 2008, The impact of cadmium and mercury contamination on reproduction and body mass of earthworms, Plant. Soil Environ., 54, 61, 10.17221/439-PSE
Laszczyca, 2004, Profiles of enzymatic activity in earthworms from zinc, lead and cadmium polluted areas near Olkusz (Poland), Environ. Int., 30, 901, 10.1016/j.envint.2004.02.006
Lee, 2009, Lysosomal membrane response of earthworm, Eisenia fetida, to arsenic contamination in soils, Environ. Toxicol., 24, 369, 10.1002/tox.20441
Lehmann, 2020, The concept and future prospects of soil health, Nat. Rev. Earth Environ., 1, 1, 10.1038/s43017-020-0080-8
Lemire, 2013, Antimicrobial activity of metals: Mechanisms, molecular targets and applications, Nat. Rev. Microbiol., 11, 371, 10.1038/nrmicro3028
Lemtiri, 2014, Impacts of earthworms on soil components and dynamics, Rev. Biotechnol. Agron. Soc. Environ., 18, 121
Leveque, 2013, Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris), Environ. Pollut., 179, 232, 10.1016/j.envpol.2013.03.066
Li, 2020, Evaluation of joint toxicity of heavy metals and herbicide mixtures in soils to earthworms (Eisenia fetida), J. Environ. Sci., 94, 137, 10.1016/j.jes.2020.03.055
Liang, 2011, Cadmium-induced earthworm metallothionein-2 is associated with metal accumulation and counteracts oxidative stress, Pedobiologia, 54, 333, 10.1016/j.pedobi.2011.07.011
Lijun, 2005, Activity of the enzymes of the antioxodative system in cadmium-treated Oxya chinensis (Orthoptera: Acridoidae), Environ. Toxicol. Pharmacol., 20, 412, 10.1016/j.etap.2005.04.001
Liu, 2020, Cadmium pollution alters earthworm activity and thus leaf-litter decomposition and soil properties, Environ. Pollut., 267, 10.1016/j.envpol.2020.115410
Liu, 2015, EPR detection of hydroxyl radical generation and oxidative perturbations in lead-exposed earthworms (Eisenia fetida) in the presence of decabromodiphenyl ether, Ecotoxicol., 24, 301, 10.1007/s10646-014-1378-4
Lourenco, 2011, Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides, J. Hazard. Mater., 186, 788, 10.1016/j.jhazmat.2010.11.073
Lukkari, 2005, Avoidance of Cu-and Zn-contaminated soil by three ecologically different earthworm species, Ecotoxicol. Environ. Saf., 62, 35, 10.1016/j.ecoenv.2004.11.012
Lukkari, 2004, Biomarker responses of the earthworm Aporrectodea tuberculata to copper and zinc exposure: differences between populations with and without earlier metal exposure, Environ. Pollut., 129, 377, 10.1016/j.envpol.2003.12.008
Lukkari, 2004, Effects of heavy metals on earthworms along contamination gradients in organic rich soils, Ecotoxicol. Environ. Saf., 59, 340, 10.1016/j.ecoenv.2003.09.011
Ma, 2002, Toxicity of Pb/Zn mine tailings to the earthworm Pheretima and the effects of burrowing on metal availability, Biol. Fertil. Soils, 36, 79, 10.1007/s00374-002-0506-0
Maity, 2018, Oxidative stress responses of two different ecophysiological species of earthworms (Eutyphoeus waltoni and Eisenia fetida) exposed to Cd-contaminated soil, Chemosphere, 203, 307, 10.1016/j.chemosphere.2018.03.189
Masindi, 2018, Environmental contamination by heavy metals, Heavy Metals, 10, 115
Mei, 2002, Acute arseniteinduced 8-hydroxyguanine is associated with inhibition of repair activity in cultured human cells, Biochem. Biophys. Res. Commun., 297, 924, 10.1016/S0006-291X(02)02309-4
Meister, 1994, Glutathione, ascorbate, and cellular protection, Cancer Res., 34, 1969
Moore, 1990, Lysosomal cytochemistry in marine environmental monitoring, Histochem. J., 22, 10.1007/BF02386003
Muangphra, 2011, Comparative genotoxicity of cadmium and lead in earthworm coelomocytes, Appl. Environ. Soil Sci., 2011, 1, 10.1155/2011/925950
Muthukaruppan, 2015, Heavy metal induced biomolecule and genotoxic changes in earthworm Eisenia fetida, Invertbr. Surviv. J., 12, 237
Nannoni, 2011, Uptake and bioaccumulation of heavy elements by two earthworm species from a smelter contaminated area in northern Kosovo, Soil Biol. Biochem., 43, 2359, 10.1016/j.soilbio.2011.08.002
Op De Beeck, 2015, Impact of metal pollution on fungal diversity and community structures, Environ. Microbiol., 17, 2035, 10.1111/1462-2920.12547
Oves, 2016, Heavy metals: biological importance and detoxification strategies, J. Bioremediat Biodegrad., 7, 334
Panday, 2016, Aldehyde dehydrogenase expression in Metaphire posthuma as a bioindicator to monitor heavy metal pollution in soil, BMC Res Notes, 9, 1, 10.1186/s13104-016-2297-7
Pratviel, 2012, Oxidative DNA damage mediated by transition metal ions and their complexes, 201
Ray, 2019, Analysis of oxidative stress and cellular aggregation in the coelomocytes of earthworms collected from metal contaminated sites of industrial and agricultural soils of West Bengal, India. Environ. Sci. Pollut. Res., 26, 22625, 10.1007/s11356-019-05438-x
Reinecke, 2004, The comet assay as biomarker of heavy metal genotoxicity in earthworms, Arch. Environ. Contam. Toxicol., 46, 208, 10.1007/s00244-003-2253-0
Renu, 2020, Eco-toxic effects of lead and nickel on survivability, reproduction and growth of earthworm (Eudrilus eugeniae), J. Entomol. Zool Stud., 8, 1351, 10.22271/j.ento.2020.v8.i5s.7691
Rocco, 2011, Suitability of lysosomal membrane stability in Eisenia fetida as biomarker of soil copper contamination, Ecotoxicol. Environ. Saf., 74, 984, 10.1016/j.ecoenv.2011.01.013
Roubalova, 2015, The role of earthworm defense mechanisms in ecotoxicity studies, Invertebr. Surviv. J., 12, 203
Samanovic, 2012, Copper in microbial pathogenesis: meddling with the metal, Cell Host Microbe, 11, 106, 10.1016/j.chom.2012.01.009
Scheffczyk, 2014, Comparison of the effects of zinc nitrate-tetrahydrate and tributyltin-oxide on the reproduction and avoidance behavior of the earthworm Eisenia andrei in laboratory tests using nine soils, Appl. Soil Ecol., 83, 253, 10.1016/j.apsoil.2014.03.017
Shi, 2017, A brief review and evaluation of earthworm biomarkers in soil pollution assessment, Environ. Sci. Pollut. Res., 24, 13284, 10.1007/s11356-017-8784-0
Shi, 2020, Vermiremediation of organically contaminated soils: concepts, current status, and future perspectives, Appl. Soil Ecol., 147, 10.1016/j.apsoil.2019.103377
Shore, 2014, Detection and drivers of exposure and effects of pharmaceuticals in higher vertebrates, Philos. Trans. R. Soc. B, 369, 10.1098/rstb.2013.0570
Shoults-Wilson, 2011, Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida), Ecotoxicol., 20, 385, 10.1007/s10646-010-0590-0
Siddiquee, 2015, Heavy metal contaminants removal from wastewater using the potential flamentous fungi biomass: a review, J. Microb. Biochem. Technol., 7, 384, 10.4172/1948-5948.1000243
Sinkakarimi, 2020, Interspecific differences in toxicological response and subcellular partitioning of cadmium and lead in three earthworm species, Chemosphere, 238, 10.1016/j.chemosphere.2019.124595
Sivakumar, 2015, Effects of metals on earthworm life cycles: a review, Environ. Monit. Assess., 187, 1, 10.1007/s10661-015-4742-9
Sizmur, 2009, Do earthworms impact metal mobility and availability in soil?–a review, Environ. Pollut., 157, 1981, 10.1016/j.envpol.2009.02.029
Spurgeon, 1996, Risk assessment of the threat of secondary poisoning by metals to predators of earthworms in the vicinity of a primary smelting works, Sci. Total Environ., 187, 167, 10.1016/0048-9697(96)05132-7
Spurgeon, 2003, A summary of eleven years progress in earthworm ecotoxicology, Pedobiologia, 47, 588
Sturzenbaum, 2004, Cadmium detoxification in earthworms: from genes to cells, Environ. Sci. Technol., 38, 6283, 10.1021/es049822c
Sturzenbaum, 1998, The identification, cloning and characterization of earthworm metallothionein, FEBS Lett., 431, 437, 10.1016/S0014-5793(98)00809-6
Sturzenbaum, 2001, Metal ion trafficking in earthworms: identification of a cadmium-specific metallothionein, J. Biol. Chem., 276, 34013, 10.1074/jbc.M103605200
Suthar, 2008, Earthworms as bioindicator of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils: is metal bioaccumulation affected by their ecological category?, Ecol. Eng., 32, 99, 10.1016/j.ecoleng.2007.10.003
Swati, 2017, Fate and bioavailability of heavy metals during vermicomposting of various organic wastes-a review, Process Saf. Environ. Prot., 109, 30, 10.1016/j.psep.2017.03.031
Takacs, 2016, Exposure of Eisenia andrei (Oligochaeta; Lumbricidea) to cadmium polluted soil inhibits earthworm maturation and reproduction but not restoration of experimentally depleted coelomocytes or regeneration of amputated segments, Folia Biol (Krakow), 64, 275, 10.3409/fb64_4.275
Tamas, 2014, Heavy metals and metalloids as a cause for protein misfolding and aggregation, Biomolecules, 4, 252, 10.3390/biom4010252
Tang, 2017, Metabolic responses of Eisenia fetida to individual Pb and Cd contamination in two types of soils, Sci. Rep., 7, 1, 10.1038/s41598-017-13503-z
Tchounwou, 2012, Heavy metals toxicity and the environment, 101, 133
Uwizeyimana, 2017, The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil, Environ. Toxicol. Pharmacol., 55, 20, 10.1016/j.etap.2017.08.001
Wang, 2020, Exploring the bioavailability of nickel in a soil system: physiological and histopathological toxicity study to the earthworms (Eisenia fetida), J. Hazard. Mater., 383, 10.1016/j.jhazmat.2019.121169
Wang, H., Xie, X.Y. 2014. Effects of combined pollution of Cd, Cu and Pb on antioxidant enzyme activities of earthworm in soils. Huan jing ke xue=Huanjing kexue, 35(7), 2748-2754. PMID: 25244864.
Wang, 2018, Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China, Ecotoxicol. Environ. Saf., 148, 876, 10.1016/j.ecoenv.2017.11.058
Wang, 2007, Toxicity effects of lead in polluted soil on earthworm coelomocyte lysosome, J. Agro Environ. Sci., 26, 1874
Wang, 2014, Characteristics, functions, and applications of metallothionein in aquatic vertebrates, Front. Mar. Sci., 1, 34, 10.3389/fmars.2014.00034
Wang, 2018, Toxicity of arsenite to earthworms and subsequent effects on soil properties, Soil Biol. Biochem., 117, 36, 10.1016/j.soilbio.2017.11.007
Wang, 2016, Toxicological and biochemical responses of the earthworm Eisenia fetida exposed to contaminated soil: effects of arsenic species, Chemosphere, 154, 161, 10.1016/j.chemosphere.2016.03.070
Wang, 2016, Lysosomal membrane response of the earthworm, Eisenia fetida, to arsenic species exposure in OECD soil, RSC Adv., 6, 23498, 10.1039/C5RA27725F
Weber, 2007, The role of earthworms as biological indicators of soil contamination, Bulletin USAMV-CN, 63, 64
Wen, 2004, The role of earthworms (Eisenia fetida) in influencing bioavailability of heavy metals in soils, Biol. Fertil. Soils, 40, 181, 10.1007/s00374-004-0761-3
Wijayawardena, 2017, Bioaccumulation and toxicity of lead, influenced by edaphic factors: using earthworms to study the effect of Pb on ecological health, J. Soils Sediments, 17, 1064, 10.1007/s11368-016-1605-0
Wu, 2012, Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta), Ecotoxicol. Environ. Saf., 81, 122, 10.1016/j.ecoenv.2012.05.003
Xiao, 2022, Earthworms as candidates for remediation of potentially toxic elements contaminated soils and mitigating the environmental and human health risks: a review, Environ. Int., 158, 10.1016/j.envint.2021.106924
Yan, 2021, Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals, Sci. Total Environ., 754, 10.1016/j.scitotenv.2020.141873
Yang, 2018, Combined effects of four pesticides and heavy metal chromium (Ⅵ) on the earthworm using avoidance behavior as an endpoint, Ecotoxicol. Environ. Saf., 157, 191, 10.1016/j.ecoenv.2018.03.067
Yuvaraj, 2020, Environment-friendly management of textile mill wastewater sludge using epigeic earthworms: Bioaccumulation of heavy metals and metallothionein production, J. Environ. Manag., 254, 10.1016/j.jenvman.2019.109813
Zaltauskaite, 2020, Lead impact on the earthworm Eisenia fetida and earthworm recovery after exposure, Water Air Soil Pollut., 231, 1, 10.1007/s11270-020-4428-y
Zaltauskaite, 2010, Effects of total cadmium and lead concentrations in soil on the growth, reproduction and survival of earthworm Eisenia fetida, Ekologija, 56, 10, 10.2478/v10055-010-0002-z
Zaltauskaite, 2014, Effects of cadmium and lead on the life-cycle parameters of juvenile earthworm Eisenia fetida, Ecotoxicol. Environ. Saf., 103, 9, 10.1016/j.ecoenv.2014.01.036
Zhang, 2009, Bioaccumulation of total and methyl mercury in three earthworm species (Drawida sp., Allolobophora sp., and Limnodrilus sp.), Bull. Environ. Contam. Toxicol., 83, 937, 10.1007/s00128-009-9872-8
Zhao, 2013, Predatory beetles facilitate plant growth by driving earthworms to lower soil layers, J. Anim. Ecol., 82, 749, 10.1111/1365-2656.12058
Zhao, 2018, Effects of combined exposure to perfluoroalkyl acids and heavy metals on bioaccumulation and subcellular distribution in earthworms (Eisenia fetida) from co-contaminated soil, Environ. Sci. Pollut. Res., 25, 29335, 10.1007/s11356-018-2951-9
Zheng, 2013, Toxicological responses of earthworm (Eisenia fetida) exposed to metal-contaminated soils, Environ. Sci. Pollut. Res., 20, 8382, 10.1007/s11356-013-1689-7
Zheng, 2009, Effect of lead on survival, locomotion and sperm morphology of Asian earthworm, Pheretima guillelmi, J. Environ. Sci., 21, 691, 10.1016/S1001-0742(08)62325-6
Zhou, 2013, Subacute toxicity of copper and glyphosate and their interaction to earthworm (Eisenia fetida), Environ. Pollut., 180, 71, 10.1016/j.envpol.2013.05.016
Zhu, 2021, Keystone taxa shared between earthworm gut and soil indigenous microbial communities collaboratively resist chlordane stress, Environ. Pollut., 283, 10.1016/j.envpol.2021.117095
