Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Pagliano, 2006, Evidence for PSII-donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.), J. Photochem. Photobiol. B: Biol., 84, 70, 10.1016/j.jphotobiol.2006.01.012
La Rocca, 2009, Responses of the Antarctic microalga Koliella antartica (Trebouxiophyceae, Chlorophyta) to cadmium contamination, Photosynthetica, 47, 471, 10.1007/s11099-009-0071-y
Quartacci, 2001, Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency and excess, J. Exp. Bot., 152, 67
Navari-Izzo, 1998, Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess of copper, Physiol. Plant., 104, 630, 10.1034/j.1399-3054.1998.1040416.x
Navari-Izzo, 1999, Superoxide and hydroxyl radical generation, and superoxide dismutase in PSII membrane fragments from wheat, Free Radic. Res., 31, S3, 10.1080/10715769900301251
Watanabe, 2002, Mechanism of adaptation to high aluminium condition in native plant species growing in acid soils: a review, Commun. Soil Sci. Plant Anal., 33, 1247, 10.1081/CSS-120003885
Dalla Vecchia, 2005, Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium, Plant Sci., 168, 329, 10.1016/j.plantsci.2004.07.025
Rascio, 2008, Metal accumulation and damage in rice (c.v. Vialone nano) seedlings exposed to cadmium, Environ. Exp. Bot., 62, 267, 10.1016/j.envexpbot.2007.09.002
Hall, 2002, Cellular mechanisms for heavy metal detoxification and tolerance, J. Exp. Bot., 53, 1, 10.1093/jexbot/53.366.1
Sgherri, 2003, Phenols and antioxidative status of Raphanus sativus grown in copper excess, Physiol. Plant., 118, 21, 10.1034/j.1399-3054.2003.00068.x
Brooks, 1977, Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants, J. Geochem. Explor., 7, 49, 10.1016/0375-6742(77)90074-7
Rascio, 1977, Metal accumulation by some plants growing on zinc-mine deposits, Oikos, 29, 250, 10.2307/3543610
Reeves, 2006, Hyperaccumulation of trace elements by plants, 1
Chaney, 1997, Phytoremediation of soil metals, Curr. Opin. Biotechnol., 8, 279, 10.1016/S0958-1669(97)80004-3
Robinson, 2006, Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand, Environ. Exp. Bot., 58, 206, 10.1016/j.envexpbot.2005.08.004
Sun, 2006, Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator, Plant Soil, 285, 125, 10.1007/s11104-006-0064-6
Venkatachalam, 2009, Molecular cloning and characterization of phosphate (Pi) responsive genes in Gulf ryegrass (Lolium multiflorum L.): a Pi hyperaccumulator, Plant Mol. Biol., 69, 1, 10.1007/s11103-008-9401-x
Karimi, 2009, An arsenic-accumulating, hypertolerant brassica, Isatis cappadocica, New Phytol., 184, 41, 10.1111/j.1469-8137.2009.02982.x
Macnair, 2003, The hyperaccumulation of metals by plants, Adv. Bot. Res., 40, 63, 10.1016/S0065-2296(05)40002-6
Faucon, 2007, Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil, Plant Soil, 301, 29, 10.1007/s11104-007-9405-3
Faucon, 2009, Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa, Plant Soil, 317, 201, 10.1007/s11104-008-9801-3
Baker, 1989, Terrestrial higher plants which hyperaccumulate metallic elements–a review of their distribution, ecology and phytochemistry, Biorecovery, 1, 81
Verbruggen, 2009, Molecular mechanisms of metal hyperaccumulation in plants, New Phytol., 181, 759, 10.1111/j.1469-8137.2008.02748.x
Sagner, 1998, Hyperaccumulation, complexation and distribution of nickel in Sebestia acuminata, Phytochemistry, 47, 339, 10.1016/S0031-9422(97)00593-1
1998, 380
Yang, 2004, Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance), Plant Soil, 259, 181, 10.1023/B:PLSO.0000020956.24027.f2
Reeves, 2000, Metal-accumulating plants, 193
Karimi, 2010, Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran, Iran, Int. J. Phytoremed., 12, 159, 10.1080/15226510903213977
Wang, 2007, Uptake and accumulation of arsenic by 11 Pteris taxa from southern China, Environ. Pollut., 145, 225, 10.1016/j.envpol.2006.03.015
Assunção, 2003, Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants, New Phytol., 159, 351, 10.1046/j.1469-8137.2003.00820.x
Bert, 2000, Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae), New Phytol., 146, 225, 10.1046/j.1469-8137.2000.00634.x
Escarré, 2000, Zinc and cadmium hypraccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in Mediterranean area: implication for phytoremediation, New Phytol., 145, 429, 10.1046/j.1469-8137.2000.00599.x
Yang, 2006, Dynamics of zinc uptake and accumulation in the hyperaccumulating and nonhyperaccumulating ecotypes of Sedum alfredii Hance, Plant Soil, 284, 109, 10.1007/s11104-006-0033-0
Bert, 2003, Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri, Plant Soil, 249, 9, 10.1023/A:1022580325301
Roosens, 2003, Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from Western Europe, Plant Cell Environ., 26, 1657, 10.1046/j.1365-3040.2003.01084.x
Deng, 2007, Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii, Environ. Pollut., 147, 381, 10.1016/j.envpol.2006.05.024
Milner, 2008, Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system, Ann. Bot., 102, 3, 10.1093/aob/mcn063
Krämer, 2010, Metal hyperaccumulation in plants, Annu. Rev. Plant Biol., 61, 517, 10.1146/annurev-arplant-042809-112156
Frérot, 2010, Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTLx environment interactions, New Phytol., 187, 355, 10.1111/j.1469-8137.2010.03295.x
Assunção, 2001, Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens, Plant Cell Environ., 24, 217, 10.1111/j.1365-3040.2001.00666.x
Assunção, 2010, Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency, Proc. Natl. Acad. Sci. U.S.A., 107, 10296, 10.1073/pnas.1004788107
Weber, 2004, Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri root identifies nicotinamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors, Plant J., 37, 269, 10.1046/j.1365-313X.2003.01960.x
Zhao, 2002, Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens, J. Exp. Bot., 53, 535, 10.1093/jexbot/53.368.535
Lombi, 2001, Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype, New Phytol., 149, 53, 10.1046/j.1469-8137.2001.00003.x
Liu, 2008, Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens?, Chemosphere, 71, 1276, 10.1016/j.chemosphere.2007.11.063
Lane, 2000, A biological function for cadmium in marine diatoms, Proc. Natl. Acad. Sci. U.S.A., 97, 4627, 10.1073/pnas.090091397
Assunção, 2008, Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence for binary metal exposures, Plant Soil, 303, 289, 10.1007/s11104-007-9508-x
Meharg, 2002, Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species, New Phytol., 154, 29, 10.1046/j.1469-8137.2002.00363.x
Caille, 2005, Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula, New Phytol., 165, 755, 10.1111/j.1469-8137.2004.01239.x
Poynton, 2004, Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation, Planta, 219, 1080, 10.1007/s00425-004-1304-8
Gonzaga, 2009, Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns, Sci. Total Environ., 407, 4711, 10.1016/j.scitotenv.2009.04.037
Fitz, 2002, Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation, J. Biotechnol., 99, 259, 10.1016/S0168-1656(02)00218-3
Shibagaki, 2002, Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots, Plant J., 29, 475, 10.1046/j.0960-7412.2001.01232.x
Hirai, 2003, Global expression profiling of sulphur-starved Arabidopsis by DNA microarray reveals the role of O-acetyl-l-serine as a general regulator of gene expression in response to sulphur nutrition, Plant J., 33, 651, 10.1046/j.1365-313X.2003.01658.x
Galeas, 2007, Seasonal fluctuations of selenium and sulphur accumulation in selenium hyperaccumulators and related nonaccumulators, New Phytol., 173, 517, 10.1111/j.1469-8137.2006.01943.x
Lasat, 2000, Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens, J. Exp. Bot., 51, 71, 10.1093/jexbot/51.342.71
Yang, 2006, Zinc compartmentation in root, transport into xylem, and adsorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance, Planta, 224, 185, 10.1007/s00425-005-0194-8
Haydon, 2007, Transporters of ligands for essential metal ions in plants, New Phytol., 174, 499, 10.1111/j.1469-8137.2007.02051.x
Callahan, 2006, Metal ion ligands in hyperaccumulating plants, J. Biol. Inorg. Chem., 11, 2, 10.1007/s00775-005-0056-7
Kerkeb, 2003, The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea, Plant Physiol., 131, 716, 10.1104/pp102.010686
Ingle, 2005, Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants, Plant Cell, 17, 2089, 10.1105/tpc.104.030577
Richau, 2009, Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens, New Phytol., 183, 106, 10.1111/j.1469-8137.2009.02826.x
Mari, 2006, Root to shoot long-distance circulation of nicotinammine–nickel chelates in the metal hyperaccumulator Thlaspi caerulescens, J. Exp. Bot., 57, 4111, 10.1093/jxb/erl184
Talke, 2006, Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri, Plant Physiol., 142, 148, 10.1104/pp.105.076232
Vacchina, 2003, Speciation of nickel in a hyperaccumulating plant by high performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray ms/ms assisted by cloning using yeast complementation, Anal. Chem., 75, 2740, 10.1021/ac020704m
Becher, 2004, Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri, Plant J., 37, 251, 10.1046/j.1365-313X.2003.01959.x
Axelsen, 1998, Inventory of the superfamily of P-Type ion pumps in Arabidopsis, Plant Physiol., 126, 696, 10.1104/pp.126.2.696
Papoyan, 2004, Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase, Plant Physiol., 136, 3814, 10.1104/pp.104.044503
Mils, 2003, Functional expression of AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass, Plant J., 35, 164, 10.1046/j.1365-313X.2003.01790.x
Hanikenne, 2008, Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4, Nature, 453, 391, 10.1038/nature06877
Courbot, 2007, A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase, Plant Physiol., 144, 1052, 10.1104/pp.106.095133
Willems, 2007, The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci, Genetics, 176, 659, 10.1534/genetics.106.064485
Willems, 2010, Quantitative trait loci analysis of mineral element concentrations in the Arabidopsis halleri×Arabidopsis lyrata petraea F2 progeny on cadmium-contaminated soil, New Phytol., 187, 368, 10.1111/j.1469-8137.2010.03294.x
van de Mortel, 2006, Large expression differences in genes for iron and zinc homeostasis, stress response and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens, Plant Physiol., 142, 1127, 10.1104/pp.106.082073
Durrett, 2007, The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation, Plant Physiol., 144, 197, 10.1104/pp.107.097162
Colangelo, 2006, Put the metal to the petal: metal uptake and transport throughout plants, Curr. Opin. Plant Biol., 9, 322, 10.1016/j.pbi.2006.03.015
Gendre, 2006, TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotinamine–Ni/Fe transporter, Plant J., 49, 1, 10.1111/j.1365-313X.2006.02937.x
Krämer, 1997, The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Hálácsy, Plant Physiol., 115, 1641, 10.1104/pp.115.4.1641
Su, 2008, Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata, New Phytol., 180, 434, 10.1111/j.1469-8137.2008.02584.x
Duan, 2005, Characterization of arsenate reduction in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator, Plant Physiol., 138, 461, 10.1104/pp.104.057422
Liu, 2002, Arsenite transport by mammalian aquagliceroporins AQP7 and AQP9, Proc. Natl. Acad. Sci. U.S.A., 99, 6053, 10.1073/pnas.092131899
Ma, 2008, Transporters of arsenite in rice and their role in arsenic accumulation in rice grain, Proc. Natl. Acad. Sci. U.S.A., 105, 9931, 10.1073/pnas.0802361105
Kamiya, 2009, NIP1;1 an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana, J. Biol. Chem., 284, 2114, 10.1074/jbc.M806881200
Zhao, 2009, Arsenic uptake and metabolism in plants, New Phytol., 181, 777, 10.1111/j.1469-8137.2008.02716.x
Sors, 2005, Selenium uptake, translocation, assimilation and metabolic fate in plants, Photosinth. Res., 86, 373, 10.1007/s11120-005-5222-9
Salt, 1999, Zinc ligands in the metal accumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy, Environ. Sci. Technol., 33, 713, 10.1021/es980825x
Ueno, 2008, Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri, Plant Cell Physiol., 49, 540, 10.1093/pcp/pcn026
S.D. Bidwell, Hyperaccumulation of Metals in Australian Native Plants. PhD thesis, The University of Melbourne, Australia, 2001.
Callahan, 2008, LC–MS and GC–MS metabolite profiling of nickel (II) complexes in the latex of the nickel hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel (II) ligand, Phytochemistry, 69, 240, 10.1016/j.phytochem.2007.07.001
Bidwell, 2004, Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell, Plant Cell Environ., 27, 705, 10.1111/j.0016-8025.2003.01170.x
Ma, 2005, Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens, Planta, 220, 731, 10.1007/s00425-004-1392-5
Asemaneh, 2006, Cellular and subcellular compartmentation of Ni in the Eurasian serpentine plants Alyssum bracteatum, Alyssum murale (Brassicaceae) and Cleome heratensis (Capparaceae), Planta, 225, 193, 10.1007/s00425-006-0340-y
Freeman, 2006, Spatial imaging, speciation and quantification of Se in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata, Plant Physiol., 142, 124, 10.1104/pp.106.081158
Küpper, 2000, Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri, Planta, 212, 75, 10.1007/s004250000366
Robinson, 2003, Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii, New Phytol., 158, 279, 10.1046/j.1469-8137.2003.00743.x
Frey, 2000, Distribution of Zn in functionally different leaf epidermal cells in the hyperaccumulator Thlaspi caerulescens, Plant Cell Environ., 23, 675, 10.1046/j.1365-3040.2000.00590.x
Broadhurst, 2004, Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale, Plant Soil, 265, 225, 10.1007/s11104-005-0974-8
Cosio, 2005, Distribution of cadmium in leaves of Thlaspi caerulescens, J. Exp. Bot., 56, 565, 10.1093/jxb/eri062
Hammond, 2006, A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes, New Phytol., 170, 239, 10.1111/j.1469-8137.2006.01662.x
Kim, 2004, The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae, Plant J., 39, 237, 10.1111/j.1365-313X.2004.02126.x
Dräger, 2004, Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels, Plant J., 39, 425, 10.1111/j.1365-313X.2004.02143.x
Gustin, 2009, MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn hyperaccumulating plants, Plant J., 57, 1116, 10.1111/j.1365-313X.2008.03754.x
Persant, 2001, Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense, Plant Biol., 98, 9995
Cracium, 2006, Comparative cDNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata spp. petraea, J. Exp. Bot., 57, 2967, 10.1093/jxb/erl062
van de Mortel, 2008, Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens, Plant Cell Environ., 31, 301, 10.1111/j.1365-3040.2007.01764.x
Krämer, 2000, Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species, Plant Physiol., 122, 1343, 10.1104/pp.122.4.1343
Sarret, 2002, Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri, Plant Physiol., 130, 1815, 10.1104/pp.007799
Schat, 2002, The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes, J. Exp. Bot., 53, 2381, 10.1093/jxb/erf107
Raab, 2004, The nature of arsenic–phytochelatin complexes in Holcus lanatus and Pteris cretica, Plant Physiol., 134, 1113, 10.1104/pp.103.033506
Zhao, 2002, Arsenic hyperaccumulation by different fern species, New Phytol., 156, 27, 10.1046/j.1469-8137.2002.00493.x
Chiang, 2006, Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray, Environ. Sci. Technol., 40, 6792, 10.1021/es061432y
Sors, 2009, Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity, Plant J., 59, 110, 10.1111/j.1365-313X.2009.03855.x
Boyd, 1992, The raison d’être for metal hyperaccumulation by plants, 279
Boyd, 2001, Phytoenrichment of soil Ni content by Sebertia acuminata New Caledonia and the concept of elemental allelopathy, South Afr. J. Sci., 97, 535
Zhang, 2007, Do high-nickel leaves shed by the nickel hyperaccumulator Alyssum murale inhibit seed germination of competing plants?, New Phytol., 173, 509, 10.1111/j.1469-8137.2006.01952.x
Morris, 2009, Elemental allelopathy: processes, progress, and pitfalls, Plant Ecol., 202, 1, 10.1007/s11258-008-9470-6
Jhee, 2006, Nickel hyperaccumulation by Streptanthus polygaloides protects against the folivore Plutella xylostella (Lepidoptera: Plutellidae), Plant Ecol., 183, 91, 10.1007/s11258-005-9009-z
Jiang, 2005, Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis), New Phytol., 167, 805, 10.1111/j.1469-8137.2005.01452.x
Behmer, 2005, Metal hyperaccumulation in plants: mechanisms of defence against herbivores, Funct. Ecol., 19, 55, 10.1111/j.0269-8463.2005.00943.x
Rathinasabapathi, 2007, Arsenic hyperaccumulator in the Chinese brake fern (Pteris vittata) deters grasshopper (Schistocerca americana) herbivory, New Phytol., 175, 363, 10.1111/j.1469-8137.2007.02099.x
Galeas, 2008, Selenium hyperaccumulation reduces plant arthropod loads in the field, New Phytol., 177, 715, 10.1111/j.1469-8137.2007.02285.x
Huitson, 2003, Does zinc protect the zinc hyperaccumulator Arabidopsis halleri from herbivory by snails?, New Phytol., 159, 453, 10.1046/j.1469-8137.2003.00783.x
Noret, 2007, Do metal-rich deter herbivores? A field test of the defence hypothesis, Oecologia, 152, 92, 10.1007/s00442-006-0635-5
Boyd, 2007, The defence hypothesis of elemental hyperaccumulation: status, challenges and new directions, Plant Soil, 293, 153, 10.1007/s11104-007-9240-6
Boyd, 1998, Hyperaccumulation as a plant defensive strategy, 181
Boyd, 2009, High-nickel insects and nickel hyperaccumulator plants: a review, Insect Sci., 16, 19, 10.1111/j.1744-7917.2009.00250.x
Wall, 2006, Melanotrichus boydi (Hemiptera: Miridae) is a specialist on the nickel hyperaccumulator Streptanthus polygaloides (Brassicaceae), Southwest Nat., 31, 481, 10.1894/0038-4909(2006)51[481:MBHMIA]2.0.CO;2
Freeman, 2006, Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense, Curr. Biol., 16, 2181, 10.1016/j.cub.2006.09.015
Pollard, 1997, Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae), New Phytol., 135, 655, 10.1046/j.1469-8137.1997.00689.x
Boyd, 2002, Nickel defends the South African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mullusca: Pulmonidae), Chemoecology, 12, 91, 10.1007/s00049-002-8331-3
Hanson, 2004, Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity, New Phytol., 162, 655, 10.1111/j.1469-8137.2004.01067.x
Davis, 2000, Dynamics of Ni-based defence and organic defences in the Ni hyperaccumulator Streptanthus polygaloides Gray (Brassicaceae), New Phytol., 146, 211, 10.1046/j.1469-8137.2000.00632.x
Tolrà, 2001, Influence of zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens, New Phytol., 151, 621, 10.1046/j.0028-646x.2001.00221.x
Jhee, 2006, Effectiveness of metal–metal and metal–organic compounds combinations against Plutella xylostella (Lepidoptera: Plutellidae): implication for plant elemental defence, J. Chem. Ecol., 32, 239, 10.1007/s10886-005-9000-0
Navari-Izzo, 2001, Phytoremediation of metals: tolerance mechanisms against oxidative stress, Minerva Biotecnol., 13, 23
McGrath, 2003, Phytoextraction of metals and metalloids from contaminated soils, Curr. Opin. Biotechnol., 14, 277, 10.1016/S0958-1669(03)00060-0
Pilon-Smits, 2005, Phytoremediation, Annu. Rev. Plant Biol., 56, 15, 10.1146/annurev.arplant.56.032604.144214
Kidd, 2009, Trace element behaviour at the root–soil interface: implications in phytoremediation, Environ. Exp. Bot., 67, 243, 10.1016/j.envexpbot.2009.06.013
Schwitzuébel, 2009, From green to clean: a promising approach towards environmental remediation and human health for the 21st century, Agrochimica, LIII-N, 4, 209
Chaney, 1983, Plant uptake of inorganic waste constitutes, 50
Cunningham, 1995, Phytoremediation of contaminated soils, Trends Biotechnol., 13, 393, 10.1016/S0167-7799(00)88987-8
Ebbs, 1997, Heavy metals in the environment: phytoextraction of cadmium and zinc from a contaminated soil, J. Environ. Qual., 26, 1424, 10.2134/jeq1997.00472425002600050032x
Brown, 1995, Zinc and cadmium uptake of Thlaspi caerulescens grown in nutrient solution, Soil Sci. Soc. Am. J., 59, 125, 10.2136/sssaj1995.03615995005900010020x
Robinson, 1998, The potential of Thlaspi caerulescens for phytoremediation of contaminated soils, Plant Soil, 203, 47, 10.1023/A:1004328816645
Krämer, 1996, Free histidine as a metal chelator in plants that accumulate nickel, Nature, 379, 635, 10.1038/379635a0
Tamura, 2005, Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench), J. Plant Res., 118, 355, 10.1007/s10265-005-0229-z
Xue, 2004, Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb (Phytolaccaceae), Environ. Pollut., 131, 393, 10.1016/j.envpol.2004.03.011
Kidd, 2005, Metal extraction by Alyssum serpyllifolium spp. lusitanicum on mine-spoil soils from Spain, Sci. Total Environ., 336, 1, 10.1016/j.scitotenv.2004.06.003
McGrath, 1993, The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils, 673
Brown, 1994, Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil, J. Environ. Qual., 23, 1151, 10.2134/jeq1994.00472425002300060004x
McGrath, 2006, Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri, Environ. Pollut., 141, 115, 10.1016/j.envpol.2005.08.022
Yanai, 2006, Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens, Environ. Pollut., 139, 167, 10.1016/j.envpol.2005.03.013
Zhao, 2003, Assessing the potential for Zn and cadmium phytoremediation with hyperaccumulator Thlaspi caerulescens, Plant Soil, 249, 37, 10.1023/A:1022530217289
McGrath, 2000, Potential for phytoextraction of zinc and cadmium from soils using hyperaccumulator plants, 109
Robinson, 1997, The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel, J. Geochem. Explor., 59, 75, 10.1016/S0375-6742(97)00010-1
Robinson, 1997, The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining, J. Geochem. Explor., 60, 115, 10.1016/S0375-6742(97)00036-8
Kertulis-Tartar, 2006, Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study, Int. J. Phytoremed., 8, 311, 10.1080/15226510600992873
Salido, 2003, Phytoremediation of arsenic and lead in contaminated soil using Chinese brake fern (Pteris vittata) and Indian mustard (Brassica juncea), Int. J. Phytoremed., 5, 89, 10.1080/713610173
Brooks, 1998, The potential use of hyperaccumulators and other plants in phytomining, 327
Singer, 2007, Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel, Environ. Pollut., 147, 74, 10.1016/j.envpol.2006.08.029
Brewer, 1999, Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus, Theor. Appl. Genet., 99, 761, 10.1007/s001220051295
Gleba, 1999, Use of plant roots for phytoremediation and molecular farming, Proc. Natl. Acad. Sci. U.S.A., 96, 5973, 10.1073/pnas.96.11.5973
Lombi, 2001, Phytoremediation of heavy metal contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction, J. Environ. Qual., 30, 1919, 10.2134/jeq2001.1919
Kawashima, 2004, Heavy metal tolerance of transgenic plants over-expressing cysteine synthase, Biotechnol. Lett., 26, 153, 10.1023/B:BILE.0000012895.60773.ff
Bennet, 2003, Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings, J. Environ. Qual., 32, 432, 10.2134/jeq2003.0432
Lee, 2003, Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals, Plant Physiol., 133, 589, 10.1104/pp.103.021972
Berken, 2002, Genetic engineering of plants to enhance Selenium phytoremediation, Crit. Rev. Plant Sci., 21, 567, 10.1080/0735-260291044368
Lee, 2003, Over-expression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress, Plant Physiol., 131, 656, 10.1104/pp.014118
Song, 2004, A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis, Plant Physiol., 135, 1027, 10.1104/pp.103.037739
Verret, 2004, Over-expression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance, FEBS Lett., 576, 306, 10.1016/j.febslet.2004.09.023
Pilon-Smits, 1999, Over-expression of ATP sulfurylase in Brassica juncea leads to increased selenate uptake, reduction and tolerance, Plant Physiol., 119, 123, 10.1104/pp.119.1.123
Van Huysen, 2004, Exploring the selenium phytoremediation potential of transgenic Indian mustard over-expressing ATP sulfurylase or cystathionine-γ-synthase, Int. J. Phytoremed., 6, 111, 10.1080/16226510490454786
Zhao, 2009, Biofortification and phytoremediation, Curr. Opin. Plant Biol., 12, 373, 10.1016/j.pbi.2009.04.005
Nicks, 1998, A pioneering study of the potential of phytomining for nickel, 313
Minguzzi, 1948, Il contenuto in nickel nelle ceneri di Alyssum bertolonii Desv, Mem. Soc. Tosc. Sci. Nat., A55, 49
Anderson, 1999, Phytomining for nickel, thallium and gold, J. Geochem. Explor., 67, 407, 10.1016/S0375-6742(99)00055-2
Nicks, 1995, Farming for metals, Mining Environ. Manage., 15
Robinson, 2009, The phytomanagement of trace elements in soil, Crit. Rev. Plant Sci., 28, 240, 10.1080/07352680903035424
Ellis, 2003, Plant, selenium and human health, Curr. Opin. Plant Biol., 6, 273, 10.1016/S1369-5266(03)00030-X