Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự sinh học của kim loại nặng và tác hại genotoxic trong hai mức độ dinh dưỡng khi tiếp xúc với chất thải khoáng sản: phương pháp lý thuyết mạng
Tóm tắt
Phân tích các tác động tiêu cực của ô nhiễm kim loại trong môi trường là phức tạp và khó đánh giá, do số lượng lớn các biến số và mức độ tổ chức sinh học liên quan. Do đó, một cách diễn giải toàn diện về cấu trúc của các tương tác sinh thái từ góc nhìn độc hại đa yếu tố có thể đạt được bằng cách sử dụng các công cụ phân tích mới, chẳng hạn như phân tích lý thuyết mạng phức tạp (CNT). Kết quả của chúng tôi cho thấy rằng mức độ dinh dưỡng có tác động đến sự làm giàu kim loại, với các loài ăn xác thối (detritivores) có mức độ sinh học tích lũy cao nhất so với thực vật, cũng như mức độ sinh học tích lũy cao hơn trong mối quan hệ đất-người ăn xác thối. Hơn nữa, Vachellia farnesiana thể hiện độ nhạy cao hơn đối với tổn thương genotoxic so với Eisenia fetida. Cuối cùng, phân tích mạng phức tạp cho thấy rằng các loài ăn xác thối là liên kết quan trọng trong động lực này, và các tương tác giữa kim loại nặng, thực vật và người ăn xác thối phụ thuộc vào điều này. Nghiên cứu này cho thấy có tác động của địa điểm nghiên cứu đối với sinh học tích lũy kim loại nặng và sự kích thích tổn thương DNA, và rằng những phản ứng này là đặc trưng cho mỗi loài và mỗi kim loại đã được tích lũy sinh học, điều này cũng cho thấy sự nhạy cảm cụ thể cho mỗi mức độ dinh dưỡng. Hơn nữa, việc áp dụng phương pháp CNT cho phép chúng tôi làm rõ trong hệ thống cụ thể này, các loại tương tác và các thành phần chính của cấu trúc dinh dưỡng.
Từ khóa
#ô nhiễm kim loại nặng #tích lũy sinh học #tổn thương genotoxic #lý thuyết mạng phức tạp #mức độ dinh dưỡngTài liệu tham khảo
Saint-Béat B, Baird D, Asmus H, Asmus R, Bacher C, Pacella SR, Niquil N. Trophic networks: how do theories link ecosystem structure and functioning to stability properties? A review. Ecol Indic. 2015;52:458–71.
Fath BD, Scharler UM, Ulanowicz RE, Hannon B. Ecological network analysis: network construction. Ecol Model. 2007;208:49–55.
Watts DJ, Strogatz SH. Collective dynamics of ‘small world’ networks. Nature. 1998;393:440–2.
Dorogovtsev SN, Mendes JFF. Evolution of networks: from biological nets to the internet and WWW. Oxford: Oxford University Press; 2003.
Newman MEJ. Networks: an introduction. Oxford: Oxford University Press; 2010.
Wasserman S, Faust K. Social network analysis: methods and applications. Cambridge: Cambridge University Press; 1994.
Gao W, Li Q, Zhao B, Cao G. Multicasting in delay tolerant networks: a social network perspective. Proc ACM Mobi Hoc. 2009;1:299–308.
Xu B, Sun F, Yang C, Gao D, Ren J. Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. Int J Control. 2011;84:1543–52.
Costa LDF, Rodrigues FA, Cristino AS. Complex networks: the key to systems biology. Genet Mol Biol. 2008;31:591–601.
Christian RR, Baird D, Luczkovich J, Johnson JC, Scharler UM, Ulanowicz RE. Role of network analysis in comparative ecosystem ecology of estuaries. In: Belgrano A, Scharler UM, Dunne J, Ulanowicz RE, editors. Aquatic food webs. Oxford: Oxford University Press; 2005. p. 25–40.
Heymans JJ, Coll M, Libralato S, Morissette L, Christensen V. Global patterns in ecological indicators of marine food webs: a modelling approach. PLoS One. 2014;9:e95845.
Gall JE, Boyd RS, Rajakaruna N. Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess. 2015;187:201.
Tovar-Sánchez E, Cervantes LT, Martínez C, Rojas E, Valverde M, Ortiz-Hernández ML, Mussali-Galante P. Comparison of two wild rodent species as sentinels of environmental contamination by mine tailings. Environ Sci Pollut Res. 2012;19:1677–86.
Zhu D, Ke X, Wu L, Christie P, Luo Y. Biological transfer of dietary cadmium in relation to nitrogen transfer and 15 N fractionation in a soil collembolan-predatory mite food chain. Soil Biol Biochem. 2016;101:207–16.
Braune B, Muir D, DeMarch B, Gamberg M, Poole K, Currie R, Dodd M, Duschenko W, Eamer J, Elkin B, Evans M, Grundy S, Hebert C, Johnstone R, Kidd K, Koenig B, Lockhart L, Marshall H, Reimer K, Sanderson J, Shutt L. Spatial and temporal trends of contaminants in Canadian Arctic freshwater and terrestrial ecosystems: a review. Sci Total Environ. 1999;230:145–207.
Mussali-Galante P, Tovar-Sánchez E, Valverde V, Valencia-Cuevas L, Rojas E. Evidence of population genetic effects in Peromyscus melanophrys chronically exposed to mine tailings in Morelos, Mexico. Environ Sci Pollut Res. 2013;20:7666–79.
Prosi F. Heavy metals in aquatic organisms. In: Förstner U, Wittmann G, editors. Metal pollution in the aquatic environment. New York: Springer; 1981. p. 271–323.
Fourie F, Reinecke SA, Reinecke AJ. The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay. Ecotoxicol Environ Saf. 2007;67:361–8.
Li CC, Dang F, Cang L, Zhou DM, Peijnenburg WJGM. Internal distribution of cd in lettuce and resulting effects on cd trophic transfer to the snail: Achatina fulica. Chemosphere. 2015;135:123–8.
Pey B, Nahmani J, Auclerc A, Capowiez Y, Cluzeau D, Cortet J, Decaëns T, Deharveng L, Dubs F, Joimel S. Current use of and future needs for soil invertebrate functional traits in community ecology. Basic Appl Ecol. 2014;15:194–206.
Gómez-Bernal J, Santana-Carillo J, Romero-Martin F, Armienta-Hernández M, Morton-Bermea O, Ruíz-Huerta E. Plantas de sitios contaminados con desechos mineros en Taxco, Guerrero, Mexico. Bol Soc Bot México. 2010;87:131–3.
Olea C, Zúñiga K. Plantas con potencial Para fitorremediación de suelos contaminados con metales pesados en El Fraile, Guerrero. Guerrero: Universidad Autónoma de Guerrero; 2009.
Galarza Z. Especiación química de elementos potencialmente tóxicos en los Jales “El Fraile” en Santa Rosa, municipio de Taxco, Guerrero. Guerrero: Universidad Autónoma de Guerrero; 2009.
Ruíz E, Armienta M. Acumulación de arsénico y metales pesados en maíz en suelos cercanos a Jales o residuos mineros. Rev Int Contam Ambie. 2012;28:103–17.
Talavera O, Yta M, Moreno R, Dótor A, Flores N, Durante C. Mineralogy and geochemistry of sulfide-bearing tailings from silver mines in the Taxco, Mexico area to evaluate their potential environmental impact. Geofis Int. 2005;44:49–64.
Tice R, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu J, Sasaki Y. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35:206–21.
Zar JH. Biostatistical analysis. New Jersey: Prentice-Hall; 2010.
Bavelas A. A mathematical model for group structures. Hum Organ. 1948;7:16–30.
Barabási AL. Linked: the new science of networks. Massachusetts: Perseus; 2003.
Freeman LC. A set of measures of centrality based upon betweenness. Sociometry. 1977;40:35–41.
Freeman LC. Centrality in networks: I. Conceptual clarification. Soc Networks. 1979;1:215–39.
Bonacich P. Power and centrality: a family of measures. Am J Sociol. 1987;92:1170–82.
Borgatti SP. Netdraw network visualization. Massachusetts: Analytic Technologies; 2002.
Newman MEJ, Barasabi Al, Watts DJ. The structure and dynamics of complex networks. Princeton: Princeton University Press; 2004.
Adriano D. Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risk of metals. New York: Springer-Verlag; 2001.
Barceló J, Llugany M, Lombini A, Poschenrieder C. Glycine may contribuye to the protection of Silene armeria against excess copper. In: Li CJ, editor. Plant nutrition for food security, human health and environmental protection. Pekín: Tsinghua University Press; 2005. p. 634–5.
Prasad MNV. Heavy metal stress in plants: from biomolecules to ecosystems. 2nd ed. New Delhi: Narosa Publishing House; 2004.
Robinson BH, Bañuelos G, Conesa HM, Evangelou MW, Schulin R. The phytomanagement of trace elements in soil. Crit Rev Plant Sci. 2009;28:240–66.
Guerinot ML. The ZIP family of metal transporters (review). Biochim Biophys Acta. 2000;1465:190–8.
Beyer WN, Patter OH, Sileo L, Hoffman DJ, Mulhern BM. Metal contamination in wildlife living near two zinc smelters. Environ Pollut. 1985;38:63–86.
Heikens A, Peijnenburg WJGM, Henricks AJ. Bioaccumulation of heavy metals in terrestrial invertebrates. Environ Pollut. 2001;113:385–93.
Lukán M. Heavy metals in alpine terrestrial invertebrates. Oecologia. 2009;18:31–8.
Morgan JE, Morgan AJ. Calcium-lead interactions involving earthworms. I: the effect of exogenous calcium on lead accumulation by earthworms under field and laboratory conditions. Environ Pollut. 1988;12:235–47.
Van Gestel CA, Koolhaas JE, Hamers T, Van Hoppe M, Van Roovert M, Korsman C, Reinecke SA. Effects of metal pollution on earthworm communities in a contaminated floodplain area: linking biomarker, community and functional responses. Environ Pollut. 2009;157:895–903.
Goodyear KL, McNeill S. Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. Sci Total Environ. 1999;229:1–19.
Leita L, Enne G, Nobili DM, Baldini M, Sequi P. Heavy metal bioaccumulation in lamb and sheep bred in smelting and mining areas of S.W. Sardinia (Italy). Bull Environ Contam Toxicol. 1991;46:887–93.
Van Gestel CA, Dirven-Van Breemen EM, Baerselman R. Accumulation and elimination of cadmium, chromium, and zinc and effects of grown and reproduction in Eisenia andrei (Oligochaeta, Annelida). Sci Total Environ. 1993;(Suppl 1):585–97.
Zhuang P, Huiling ZOU, Wensheng SHU. Biotransfer of heavy metals along a soil-plant-insect-chicken food chain: field study. J Environ Sci. 2009;21:849–53.
Cortet J, Gomot-De Vauflery A, Poinsot-Balaguer N, Gomot L, Texier C, Cluzeau D. The use of invertebrate soil fauna in monitoring pollutant effects. Eur J Soil Biol. 1999;35:115–34.
Caetano-Pereira CM, Pagliarini MS, Brasil EM, Martins. Influence of aluminium in causing chromosome stickiness in maize microsporocytes. Maydica. 1995;40:325–30.
Xiao NW, Song Y, Ge F, Liu XH, Ou-Yang ZY. Biomarkers responses of the earthworm Eisenia fetida to acetochlor exposure in OECD soil. Chemosphere. 2006;65:907–12.
Aksoy O, Erbulucu T, Öner S, Tekeli IB. Phytotoxic and genotoxic effects of water samples taken from the eastern channel of Kocaeli on Vicia faba and Zea mays. Fres Environ Bull. 2012;21:1819–26.
Erturk FA, Nardemir G, Agar G. Molecular determination of genotoxic effects of cobalt and nickel on maize (Zea mays L.) by RAPD and protein analyses. Toxicol Ind Health. 2013;29:662–71.
Promkaew N, Soontornchainaksaeng P, Jampatong S, Rojanavipart P. Toxicity and genotoxicity of pendimethalin in maize and onion. KJNS. 2010;44:1010–5.
Dukesnoy I, Champeau GM, Evray G, Ledoigt G, Piquet-Pissaloux A. Enzymatic adaptations to arsenic-induced oxidative stress in Zea mays and genotoxic effect of arsenic in root tips of Vicia faba and Zea mays. C R Biol. 2010;333:814–24.
Kumar-Rai P, Kumar G. The genotoxic potential of two heavy metals in inbred lines of maize (Zea mays L.). Turk J Bot. 2010;34:39–46.
Malekzadeh P, Khara J, Farshian S, Jamal-Abad AK, Rahmatzadeh S. Cadmium toxicity in maize seedlings: changes in antioxidant enzyme activities and root growth. Pak J Biol Sci. 2007;10:127–31.
Reinecke SA, Reinecke AJ. The comet assay as biomarker of heavy metal genotoxicity in earthworms. Arch Environ Contam Toxicol. 2004;46:208–15.
Krishnaveni M, Chandrasekar R, Amsavalli L, Madhaiyan P, Durairaj S. Air pollution tolerance index of plants at Perumalmalai Hills, Salem, Tamil Nadu, India. IJPSRR. 2013;20:234–9.
Rosa CEV, Sierra M, Radetski CM. Use of plant tests in the evaluation of textile effluent toxicity. Ecotoxicol Environ Res. 1999;2:56–61.
Rai PK. Impacts of particulate matter pollution on plants: implications for environmental biomonitoring. Ecotoxicol Enviro Saf. 2016;129:120–36.
Calow P. General principles and overview. In: Calow P, editor. Handbook of ecotoxicology. London: Blackwell Scientific Publications; 1993. p. 1–5.
Morgan AJ, Kille P, Stürzenbaum SR. Microevolution and ecotoxicology of metals in invertebrates. Environ Sci Technol. 2007;41:1085–96.
Posthuma L, Van Straalen NM. Heavy-metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences. Comp Biochem Physiol Part C: Pharmacology, Toxicology and Endocrinology. 1993;106:11–38.
Reinecke SA, Prinsloo MW, Reinecke AJ. Resistance of Eisenia fetida (Oligochaeta) to cadmium after longterm exposure. Ecotoxicol Enviro Saf. 1999;42:75–80.
Gall JE, Rajakaruna N. The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. In: Lang M, editor. Brassicaceae: characterization, functional genomics and health benefits; 2013. p. 121–48.
Hossain MA, Piyatida P, Teixeria da Silva JA, Fujita M. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. 2012; https://doi.org/10.1155/2012/872875.
Unterbrunner R, Puschenreiter M, Sommer P, Wieshammer G, Tlustoš P, Zupan M, Wenzel WW. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ Pollut. 2007;148:107–14.
Mathews S, Ma LQ, Rathinasabapathi C, Stamps RH. Arsenic reduced scale-insect infestation on arsenic hyperaccumulator Pteris vittata L. Environ Exp Bot. 2009;65:282–6.
Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos. 1994;69:373–86.
Lavelle P. Functional domains in soils. Ecol Res. 2002;17:441–50.
Wilby A. Ecosystem engineering: a trivialized concept? TREE. 2002;17:307.
Brown GG, Barois I, Lavelle P. Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol. 2000;36:177–98.
Jouquet P, Dauber J, Lagerlöf J, Lavelle P, Lepage M. Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl Soil Ecol. 2006;32:153–64.
Lavelle P. Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res. 1997;27:93–132.
Odling-Smee FJ, Laland KN, Feldman MW. Niche construction: the neglected process in evolution. New Jersey: Princeton University Press; 2003.