Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)

Solar Energy - Tập 84 Số 8 - Trang 1402-1412 - 2010
Changying Zhao1, Wei Lu1, Yuan Tian1
1School of Engineering, University of Warwick, CV4 7AL, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bhattacharya, 2002, Thermophysical properties of high porosity metal foams, International Journal of Heat and Mass Transfer, 45, 1017, 10.1016/S0017-9310(01)00220-4

Boomsma, 2001, On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam, International Journal of Heat and Mass Transfer, 44, 827, 10.1016/S0017-9310(00)00123-X

Boomsma, 2001, The effects of compression and pore size variations on the liquid flow characteristics in metal foams, ASME Journal of Fluids Engineering, 124, 263, 10.1115/1.1429637

Calmidi, 1999, The effective thermal conductivity of high porosity fibrous metal foams, ASME Journal of Heat Transfer, 121, 466, 10.1115/1.2826001

Calmidi, 2000, Forced convection in high porosity metal foams, ASME Journal of Heat Transfer, 122, 557, 10.1115/1.1287793

Ellinger, 1991, On the effect of porous layers on melting heat transfer in an enclosure, Experimental Thermal and Fluid Science, 4, 619, 10.1016/0894-1777(91)90041-O

Hoshi, 2005, Screening of high melting point phase change materials (PCM) in solar concentrating technology based on CLFR, Solar Energy, 79, 332, 10.1016/j.solener.2004.04.023

Hwang, 2002, Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams, Journal of Heat Transfer, 124, 120, 10.1115/1.1416690

Kim, 2000, Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger, Journal of Heat Transfer, 122, 572, 10.1115/1.1287170

Kim, 2001, Forced convection from aluminium foam materials in an asymmetrically heated channel, International Journal of Heat and Mass Transfer, 44, 1451, 10.1016/S0017-9310(00)00187-3

Krishnan, 2005, A two-temperature model for solid–liquid phase change in metal foams, ASME Journal of Heat Transfer, 127, 997, 10.1115/1.2010494

Lee, Y.C., Zhang, W., Xie, H., Mahajan, R.L., 1993. Cooling of a FCHIP package with 100 watt, 1 cm2 chip. In: Proceedings of the 1993 ASME International. Electronics Packaging Conference 1, ASME, New York, pp. 419–423.

Lu, 2006, Thermal analysis on metal-foam filled heat exchangers, I. Metal-foam filled pipes, International Journal of Heat and Mass Transfer, 49, 2751, 10.1016/j.ijheatmasstransfer.2005.12.012

Marin, 2005, Improvement of a thermal energy storage using plates with paraffin–graphite composite, International Journal of Heat and Mass Transfer, 48, 2561, 10.1016/j.ijheatmasstransfer.2004.11.027

Mettawee, 2007, Thermal Conductivity enhancement in a latent heat storage system, Solar Energy, 81, 839, 10.1016/j.solener.2006.11.009

Mills, 2006, Thermal conductivity enhancement of phase change materials using a graphite matrix, Applied Thermal Engineering, 26, 1652, 10.1016/j.applthermaleng.2005.11.022

Nakaso, 2008, Extensin of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks, Chemical Engineering and Processing, 47, 879, 10.1016/j.cep.2007.02.001

Nayak, 2006, A numerical model for heat sinks with phase change materials and thermal conductivity enhancers, International Journal of Heat and Mass Transfer, 49, 1833, 10.1016/j.ijheatmasstransfer.2005.10.039

Pasupathy, 2000, Phase change material-based building architecture for thermal management in residential and commercial establishments, Renewable and Sustainable Energy Reviews, 12, 39, 10.1016/j.rser.2006.05.010

Phanikumar, 2002, Non-Darcy natural convection in high porosity metal foams, International Journal of Heat and Mass Transfer, 45, 3781, 10.1016/S0017-9310(02)00089-3

Py, 2001, Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material, International Journal of Heat and Mass Transfer, 44, 2727, 10.1016/S0017-9310(00)00309-4

Siahpush, 2008, Phase change heat transfer enhancement using copper porous foam, ASME Journal of Heat Transfer, 130, 082301-1, 10.1115/1.2928010

Tian, Y, Zhao, C.Y., 2009a. Heat transfer analysis for phase change materials (PCMs). In: The 11th International Conference on Energy Storage (Effstock 2009), June, Stockholm, Sweden.

Tian, Y, Zhao, C. Y., 2009b. Numerical investigations of heat transfer in phase change materials (PCMs) using non-thermal equilibrium model. In: The 11th UK National Heat Transfer Conference (UKHTC 2009), Queen Mary, London, UK.

Tyagi, 2007, PCM thermal storage in buildings: a state of art, Renewable and Sustainable Energy Reviews, 11, 1146, 10.1016/j.rser.2005.10.002

Zalba, 2003, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, 23, 251, 10.1016/S1359-4311(02)00192-8

Zhao, 2004, Thermal transport in high porosity cellular metal foams, Journal of Thermophysics and Heat Transfer, 18, 309, 10.2514/1.11780

Zhao, 2004, The temperature dependence of effective thermal conductivity of open-celled steel alloy foams, Materials Science and Engineering: A, 367, 123, 10.1016/j.msea.2003.10.241

Zhao, 2004, Thermal radiation in metal foams with open cells, International Journal of Heat and Mass Transfer, 47, 2927, 10.1016/j.ijheatmasstransfer.2004.03.006

Zhao, 2005, Natural convection in metal foams with open cells, International Journal of Heat and Mass Transfer, 48, 2452, 10.1016/j.ijheatmasstransfer.2005.01.002

Zhao, 2006, Thermal analysis on metal-foam filled heat exchangers, II. Tube heat exchangers, International Journal of Heat and Mass Transfer, 49, 2762, 10.1016/j.ijheatmasstransfer.2005.12.014

Zhao, 2009, Flow boiling heat transfer in horizontal metal foam tubes, ASME Journal of Heat Transfer, 131, 121002-1, 10.1115/1.3216036