Heat transfer and fouling characteristics during falling film evaporation in a vertical sintered tube
Tài liệu tham khảo
Kouhikamali, 2014, Numerical investigation of falling film evaporation of multi-effect desalination plant, Appl. Therm. Eng., 70, 477, 10.1016/j.applthermaleng.2014.05.039
Cyklis, 2017, Industrial scale engineering estimation of the heat transfer in falling film juice evaporators, Appl. Therm. Eng., 123, 1365, 10.1016/j.applthermaleng.2017.05.194
Tanguy, 2019, Calcium citrate insolubilization drives the fouling of falling film evaporators during the concentration of hydrochloric acid whey, Food Res. Int., 116, 175, 10.1016/j.foodres.2018.08.009
Li, 2011, Falling water film evaporation on newly-designed enhanced tube bundles, Int. J. Heat Mass Transf., 54, 2990, 10.1016/j.ijheatmasstransfer.2011.02.052
Zhao, 2017, Experimental investigations of R134a and R123 falling film evaporation on enhanced horizontal tubes, Int. J. Refrig., 75, 190, 10.1016/j.ijrefrig.2016.12.013
Zhao, 2013, A critical review of basic crystallography to salt crystallization fouling in heat exchangers, Heat Transf. Eng., 34, 719, 10.1080/01457632.2012.739482
Li, 2016, Investigation of CaCO3 fouling in plate heat exchangers, Heat Mass Transf., 52, 2401, 10.1007/s00231-016-1752-2
Stärk, 2016, Impact of tube surface properties on crystallization fouling in falling film evaporators for seawater desalination, Heat Transf. Eng., 38, 762
Lei, 2011, Experimental observation of surface morphology effect on crystallization fouling in plate heat exchangers, Int. Commun. Heat Mass Transf., 38, 25, 10.1016/j.icheatmasstransfer.2010.10.006
Pääkkönen, 2016, CFD modelling of CaCO 3 crystallization fouling on heat transfer surfaces, Int. J. Heat Mass Transf., 97, 618, 10.1016/j.ijheatmasstransfer.2015.11.099
Morison, 2015, Reduction of fouling in falling-film evaporators by design, Food Bioprod. Process., 93, 211, 10.1016/j.fbp.2014.10.009
Herz, 2008, Fouling of roughened stainless steel surfaces during convective heat transfer to aqueous solutions, Energy Convers. Manag., 49, 3381, 10.1016/j.enconman.2007.09.034
Webb, 2000, Fouling in enhanced tubes using cooling tower water: part I: long-term fouling data, Int. J. Heat Mass Transf., 43, 3567, 10.1016/S0017-9310(99)00395-6
Li, 2000, Fouling in enhanced tubes using cooling tower water: part II: combined particulate and precipitation fouling, Int. J. Heat Mass Transf., 43, 3579, 10.1016/S0017-9310(99)00393-2
Li, 2010, Modeling cooling tower fouling in helical-rib tubes based on Von-Karman analogy, Int. J. Heat Mass Transf., 53, 2715, 10.1016/j.ijheatmasstransfer.2010.02.034
Bott, 1995, CHAPTER 4 - general models of fouling, 23
Watkinson, 1968
Somerscales, 1990
Förster, 1999, Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation, Chem. Eng. Process. Process Intensif., 38, 449, 10.1016/S0255-2701(99)00042-2
Förster, 1999, Influence of the interfacial free energy crystal/heat transfer surface on the induction period during fouling, Int. J. Therm. Sci., 38, 944, 10.1016/S1290-0729(99)00102-7
Müller-Steinhagen, 1988, Influence of thermal boundary conditions on calcium carbonate fouling in double pipe heat exchangers: Einfluβ der thermischen Randbedingungen auf die Ablagerung von CaCO3 in Doppelrohrwärmeübertragern, Chem. Eng. Process. Process Intensif., 24, 65, 10.1016/0255-2701(88)87015-6
Bansal, 2008, Analysis of ‘classical’ deposition rate law for crystallisation fouling, Chem. Eng. Process. Process Intensif., 47, 1201, 10.1016/j.cep.2007.03.016
Kern, 1959
Li, 2003, The internal surface area basis, a key issue of modeling fouling in enhanced heat transfer tubes, Int. J. Heat Mass Transf., 46, 4345, 10.1016/S0017-9310(03)00254-0
Li, 2002, Fouling characteristics of internal helical-rib roughness tubes using low-velocity cooling tower water, Int. J. Heat Mass Transf., 45, 1685, 10.1016/S0017-9310(01)00263-0
Zhang, 2013, Particulate fouling and composite fouling assessment in corrugated plate heat exchangers, Int. J. Heat Mass Transf., 60, 263, 10.1016/j.ijheatmasstransfer.2013.01.040
Li, 2016, Numerical–theoretical analysis of heat transfer, pressure drop, and fouling in internal helically ribbed tubes of different geometries, Heat Transf. Eng., 37, 279, 10.1080/01457632.2015.1052665
Li, 2013, Numerical and experimental analysis of composite fouling in corrugated plate heat exchangers, Int. J. Heat Mass Transf., 63, 351, 10.1016/j.ijheatmasstransfer.2013.03.073
Kazi, 2012, Fouling and fouling mitigation on heated metal surfaces, Desalination, 288, 126, 10.1016/j.desal.2011.12.022
Kazi, 2013, Fouling mitigation of heat exchangers with natural fibres, Appl. Therm. Eng., 50, 1142, 10.1016/j.applthermaleng.2012.08.042
Pääkkönen, 2012, Crystallization fouling of CaCO3 – analysis of experimental thermal resistance and its uncertainty, Int. J. Heat Mass Transf., 55, 6927, 10.1016/j.ijheatmasstransfer.2012.07.006
Fang, 2019, Establishment of the falling film evaporation model and correlation of the overall heat transfer coefficient, R. Soc. Open Sci., 6, 10.1098/rsos.190135
Hartley, 1964, Criteria for the break-up of thin liquid layers flowing isothermally over solid surfaces, Int. J. Heat Mass Transf., 7, 1003, 10.1016/0017-9310(64)90042-0
Li, 2011, Heat transfer characteristics of falling film evaporation on horizontal tube arrays, Int. J. Heat Mass Transf., 54, 1986, 10.1016/j.ijheatmasstransfer.2010.12.031
Li, 2017, Experimental study on condensation and evaporation flow inside horizontal three dimensional enhanced tubes, Int. Commun. Heat Mass Transf., 80, 30, 10.1016/j.icheatmasstransfer.2016.11.006
Wu, 2014, Convective condensation inside horizontal smooth and microfin tubes, J. Heat Transf., 136, 98, 10.1115/1.4026370
Bergman, 2011
Lemmon, 2010
Zubair, 1992, A probabilistic approach to the maintenance of heat-transfer equipment subject to fouling, Energy, 17, 769, 10.1016/0360-5442(92)90120-O
Li, 2018, Simulation of single bubble evaporation in microchannel in zero gravity with thermocapillary effect, ASME J. Heat Transf., 140, 112403, 10.1115/1.4040147
Li, 2020, Oscillatory fouling in condensers in cooling tower systems, ASME J. Therm. Sci. Eng. Appl., 12, 021010, 10.1115/1.4044171