Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tích truyền nhiệt cho chuyển động peristalsis EMHD của các nanofluids ion qua kênh cong với sự tán xạ Joule và hiệu ứng Hall
Tóm tắt
Mục tiêu của nghiên cứu này là nghiên cứu ảnh hưởng kết hợp của các trường điện và từ được áp dụng lên chuyển động peristalsis hai pha của nanofluid qua một kênh cong. Một mô hình hai pha của nanofluid, mô hình dẫn nhiệt Maxwell [1], và các điều kiện biên về vận tốc và nhiệt độ không trượt đã được sử dụng trong nghiên cứu này. Các hiệu ứng Hall, gia nhiệt Joule (do các trường điện và từ), và khía cạnh gia nhiệt nhớt đang được xem xét. Các phương trình điều khiển cho cấu hình dòng chảy hiện tại đã được lập mô hình và đơn giản hóa bằng cách áp dụng phương pháp bôi trơn. Sự xấp xỉ Debye-Huckel được sử dụng để đạt được nghiệm phân tích của hàm điện thế (phương trình Poisson-Boltzmann). Các biểu thức thu được được giải số qua lệnh NDSolve trong Mathematica và được vẽ để hiểu rõ hơn về ảnh hưởng của các tham số không có kích thước khác nhau lên nhiệt độ, ứng suất, tỷ lệ truyền nhiệt, và vận tốc của chất lỏng. Kết quả đồ họa cho thấy rằng tỷ lệ truyền nhiệt được gia tăng khi tăng số Hartmann, số Brinkman, và tham số Debye-Huckel trong khi giảm cho tỷ lệ điện thế zeta, tham số tán xạ Joule, và vận tốc điện thẩm. Một sự giảm trong vận tốc trục được ghi nhận gần tường dưới với các giá trị cao của $${m}^{\ast}$$.
Từ khóa
Tài liệu tham khảo
Maxwell, J.C.: A Treatise on Electricity and Magnetism. 2nd Edition, Cambridge: Oxford University Press 435–441 (1904)
Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles ASME, International Mechanical Engineering Congress and Exposition (1995)
Choi, S.U.S.: Enhancing thermal conductivity of fluid with nanofluids, in: D. A. Siginer, H. P. Wang (Eds.), Developments and applications of non-Newtonian flows. J. Heat Transf. 66, 99–105 (1995)
Xuan, Y., Li, Q.: Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21, 58–64 (2000)
Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)
Ding, Y., Alias, H., Wen, D., Williams, R.A.: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transf. 49, 240–250 (2006)
Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)
Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)
Izadi, M., Shahmardan, M.M., Rashidi, A.M.: Study on thermal and hydrodynamic indexes of a nanofluid flow in a micro heat sink. Transp. Phenom. Nano Micro Scales 1, 53–63 (2013)
Rudyak, Y., Krasnolutskii, S.L.: Dependence of the viscosity of nanofluids on nanoparticle size and material. Phys. Lett. A 378, 1845–1849 (2014)
Izadi, M., Behzadmehr, A., Shahmardan, M.M.: Effects of inclination angle on laminar mixed convection of a nanofluid flowing through an annulus. Chem. Eng. Commun. 202, 1693–1702 (2015)
Mohebbi, R., Mehryan, S.A.M., Izadi, M., Mahian, O.: Natural convection of hybrid nanofluids inside a partitioned porous cavity for application in solar power plants. J. Therm. Anal. Calorim. 137, 1719–1733 (2019)
Mohebbi, R., Izadi, M., Sidik, N.A.C., Najafi, G.: Natural convection heat transfer of nanofluid inside a cavity containing rough elements using lattice Boltzmann method. Int. J. Numer. Methods Heat Fluid Flow 29, 3659–3684 (2019)
Bozorg, M.V., Siavashi, M.: Two-phase mixed convection heat transfer and entropy generation analysis of a non-Newtonian nanofluid inside a cavity with internal rotating heater and cooler. Int. J. Mech. Sci. 151, 842–857 (2019)
Izadi, M.: Effects of porous material on transient natural convection heat transfer of nano-fluids inside a triangular chamber. Chin. J. Chem. Eng. 28, 1203–1213 (2020)
Izadi, M., Bastani, B., Sheremet, M.A.: Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach. Adv. Powder Tech. 31, 2493–2504 (2020)
Latham, T.W.: Fluid Motion in a Peristaltic Pump (MS thesis), MIT, Cambridge, AMA (1966)
Shapiro, A.H., Jaffrin, M.Y., Weinberg, S.L.: Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37, 799–825 (1969)
Dobrolyubov, A.I., Douchy, G.: Peristaltic transport as the travelling deformation waves. J. Theoret. Biology 219, 55–61 (2002)
Reddy, M.V.S., Mishra, M., Sreenadh, S., Rao, A.R.: Influence of lateral walls on peristaltic flow in a rectangular duct. J. Fluids Eng. 127, 824–827 (2005)
Nadeem, S., Akbar, N.S: Effects of heat and mass transfer on peristaltic flow of Carreau fluid in a vertical annulus. Zeitschrift für Naturforschung A 65, 781–792 (2010)
Hayat, T., Abbasi, F.M., Yami, M.A., Monaquel, S.: Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects. J. Mol. Liq. 194, 93–99 (2014)
Tanveer, A., Hayat, T., Alsaadi, F., Alsaedi, A.: Mixed convection peristaltic flow of Eyring-Powell nanofluid in a curved channel with compliant walls. Comput. Biology Med. 82, 71–79 (2017)
Prakash, J., Tripathi, D., Tiwari, A.K., Sait, S.M., Ellahi, R.: Peristaltic pumping of nanofluids through a tapered channel in a porous environment: Applications in blood flow. Symmetry 11, 868 (2019)
Kayani, S.M., Hina, S., Mustafa, M.: A new model and analysis for peristalsis of Carreau-Yasuda (CY) nanofluid subject to wall properties. Arab. J. Sci. Eng. 45, 5179–5190 (2020)
Nadeem, S., Akbar, N.S.: Influence of radially varying MHD on the peristaltic flow in an annulus with heat and mass transfer. J. Taiwan Inst. Chem. Eng. 41, 286–294 (2010)
Hayat, T., Noreen, S., Alhothuali, M.S., Asghar, S., Alhomaidan, A.: Peristaltic flow under the effects of an induced magnetic field and heat and mass transfer. Int. J. Heat Mass Transf. 55, 443–452 (2012)
Riaz, A., Ellahi, R., Nadeem, S.: Peristaltic transport of a Carreau fluid in a compliant rectangular duct. Alex. Eng. J. 53, 475–484 (2014)
Babu, D.H., Narayana, P.V.S.: Joule heating effects on MHD mixed convection of a Jeffrey fluid over a stretching sheet with power law heat flux: A numerical study. J. Magnet. Magnet. Mater. 412, 185–193 (2016)
Abbasi, F.M., Saba, Shehzad, S.A.: Heat transfer analysis for peristaltic flow of Carreau-Yasuda fluid through a curved channel with radial magnetic field. Int. J. Heat Mass Transf. 115, 777–783 (2017)
Eldabe, N.T.M., Moatimid, G.M., Hassan, M.A., Godh, W.A.: Wall properties of peristaltic MHD nanofluid flow through porous channel. Fluid Mech. Research Int. J. 2, 00019 (2018)
Jawad, M., Shah, Z., Khan, A., Khan, W., Kumam, P., Islam, S.: Entropy generation and heat transfer analysis in MHD unsteady rotating flow for aqueous suspensions of carbon nanotubes with nonlinear thermal radiation and viscous dissipation effect. Entropy 21, 492 (2019)
Hayat, T., Ahmed, B., Abbasi, F.M., Alsaedi, A.: Peristalsis of nanofluid through curved channel with Hall and Ohmic heating effects. J. Cent. South Uni. 26, 2543–2553 (2019)
Armaghani, T., Kasaeipoor, A., Izadi, M., Pop, I.: MHD natural convection and entropy analysis of a nanofluid inside T-shaped baffled enclosure. Int. J. Numer. Methods Heat Fluid Flow 28, 2916–2941 (2018)
Izadi, M., Oztop, H.F., Sheremet, M.A., Mehryan, S.A.M., Abu-Hamdeh, N.: Coupled FHD-MHD free convection of a hybrid nanoliquid in an inversed T-shaped enclosure occupied by partitioned porous media. Numer. Heat Transf. Part A: Appl. 76, 479–498 (2019)
Izadi, M., Mohebbi, R., Sajjadi, H., Delouei, A.A.: LTNE modeling of magneto-ferro natural convection inside a porous enclosure exposed to nonuniform magnetic field: Phys. A: Stat. Mech. Appl. 535, 122394 (2019)
Izadi, M., Mohammadi, S.A., Mehryan, S.A.M., Yang, T., Sheremet, M.A.: Thermogravitational convection of magnetic micropolar nanofluid with coupling between energy and angular momentum equations. Int. J. Heat Mass Transf. 145, 118748 (2019)
Izadi, M., Sheremet, M.A., Mehryan, S.A.M., Pop, I., Öztop, H.F., Abu-Hamdeh, N.: MHD thermogravitational convection and thermal radiation of a micropolar nanoliquid in a porous chamber. Int. Commun. Heat Mass Transf. 110, 104409 (2020)
Izadi, M., Ghalambaz, M., Mehryan, S.A.M.: Location impact of a pair of magnetic sources on melting of a magneto-Ferro phase change substance. Chin. J. Phys. 65, 377–388 (2020)
Izadi, M., Javanahram, M., Zadeh, S.M.H., Jing, D.: Hydrodynamic and heat transfer properties of magnetic fluid in porous medium considering nanoparticle shapes and magnetic field-dependent viscosity. Chin. J. Chem. Eng. 28, 329–339 (2020)
Izadi, M., Sheremet, M.A., Mehryan, S.M.A.: Natural convection of a hybrid nanofluid affected by an inclined periodic magnetic field within a porous medium. Chin. J. Phys. 65, 447–458 (2020)
Anwar, T., Kumam, P., Khan, I., Thounthong, P.: Heat transfer analysis of unsteady natural convection flow of Oldroyd-B model in the presence of Newtonian heating and radiation heat flux. IEEE Access 8, 92479–92489 (2020)
Eldabe, N.T., Moatimid, G.M., Abouzeid, M.Y., ElShekhipy, A.A., Abdallah, N.F.: A semianalytical technique for MHD peristalsis of pseudo plastic nanofluid with temperature-dependent viscosity: Application in drug delivery system. Heat Transf. 49, 424–440 (2020)
Polevoi, V.V.: Electroosmotic phenomena in plant tissues. Biol. Bull. 30, 133–139 (2003)
Chakraborty, S.: Augmentation of peristaltic micro-flows through electro-osmotic mechanisms. J. Phys. D 39, 5356–5363 (2006)
Bhansali, S., Vasudev, A.: MEMS for Biomedical Applications. Woodhead Publishing Series in Biomaterials, USA (2012)
Tripathi, D., Sharma, A., Bég, O.A.: Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: effects of joule heating and helmholtzsmoluchowski velocity. Int. J. Heat Mass Transf. 111, 138–149 (2017)
Akbar, N.S., Shoaib, M., Tripathi, D., Bhushan, S., Bég, O.A.: Analytical approach for entropy generation and heat transfer analysis of CNT-nanofluids through ciliated porous medium. J. Hydrodynam. 30, 296–306 (2018)
Basant, K.J., Michael, O.O.: Electromagnetic natural convection flow in a vertical microchannel with Joule heating: exact solution. J. Taibah Uni. Sci. 12, 661–668 (2018)
Narla, V.K., Tripathi, D., Bég, O.A.: Electro-osmosis modulated viscoelastic embryo transport in uterine hydrodynamics: mathematical modeling. J. Biomech. Eng. 141, 021003 (2019)
Noreen, S., Quratulain, Tripathi, D.: Heat transfer analysis on electroosmotic flow via peristaltic pumping in non-Darcy porous medium. Thermal Sci. Eng. Process 11, 254–262 (2019)
Narla, V.K., Tripathi, D., Sekhar, G.P.R.: Time-dependent analysis of electroosmotic fluid flow in a microchannel. J. Eng. Math. 114, 177–196 (2019)
Waheed, S., Noreen, S., Hussanan, A.: Study of heat and mass transfer in electroosmotic flow of third order fluid through peristaltic microchannels. Appl. Sci. 9, 2164 (2019)
Noreen, S., Waheed, S., Hussanan, A.: Peristaltic motion of MHD nanofluid in an asymmetric micro-channel with Joule heating, wall flexibility and different zeta potential. Bound. Value Problems 2019, 12 (2019)
Waheed, S., Noreen, S., Tripathi, D., Lu, D.C.: Electrothermal transport of third-order fluids regulated by peristaltic pumping. J. Biol. Phys. 46, 45–65 (2020)
Noreen, S., Waheed, S., Hussanan, A., Lu, D.C.: Entropy analysis in double-diffusive convection in nanofluids through electro-osmotically induced peristaltic microchannel. Entropy 21, 986 (2019)
Ijaz, N., Zeeshan, A., Rehman, S.U.: Effect of electro-osmosis and mixed convection on nano-bio-fluid with non-spherical particles in a curved channel. Mech. Industry 19, 108 (2018)
Narla, V.K., Tripathi, D.: Electroosmosis modulated transient blood flow in curved microvessels: Study of a mathematical model. Microvas. Research 123, 25–34 (2019)
Narla, V.K., Tripathi, D., Bég, O.A.: Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with joule dissipation. Therm. Sci. Eng. Prog. 15, 100424 (2020)