Tối ưu hóa việc thu hồi nhiệt của bộ trao đổi nhiệt dạng ống và bó ống với các baffle xoáy liên tục cho hệ thống thông gió bằng khí

Md Ashfaqul Bari1, Manuel Münsch1, Bastian Schöneberger1, Bernhard Schlagbauer1, Andrea Alina Tiu1, Andreas Wierschem1
1Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Strömungsmechanik (LSTM), Erlangen, Germany

Tóm tắt

Chúng tôi báo cáo một đánh giá định lượng về tác động của baffle xoáy liên tục lên hiệu suất thu hồi nhiệt của các bộ trao đổi nhiệt dạng ống bó theo chiều đối lưu. Góc nghiêng của baffle đã được thay đổi từ $$11^{\circ }$$ đến $$22^{\circ }$$. Do lưu chất chảy qua bó ống theo một góc do dòng chảy xoáy bên trong vỏ, bộ trao đổi nhiệt hoạt động theo chế độ đối lưu chéo. Các mô phỏng bằng phần mềm Fluent với mô hình mô phỏng độ biến đổi dòng chảy k-$$\omega$$ đã được thực hiện để điều tra các tham số nhiệt-hydraulic của hệ thống từ góc độ hiệu suất thu hồi nhiệt, tổn thất áp suất, và tỷ lệ truyền nhiệt tổng thể. Nhiệt độ không khí bên ngoài đã được thay đổi để mô phỏng thời tiết lạnh và ấm. Tổn thất áp suất đã được giới hạn ở mức dưới 250 Pa, phù hợp với tiêu chuẩn của EU về nhãn năng lượng cho các đơn vị thông gió dân dụng. Tại lưu lượng dòng tối đa là 40 m$$^3$$/h, thiết bị đạt hiệu suất thu hồi nhiệt trên $$80\%$$ cho sự khác biệt về nhiệt độ đã xem xét. Các baffle xoáy liên tục đã giúp cải thiện truyền nhiệt đối lưu bằng cách giảm diện tích dòng chảy chéo và tăng vận tốc. Các góc nhỏ hơn dẫn đến tổn thất áp suất lớn hơn trong khi không có ảnh hưởng rõ ràng tới hiệu suất thu hồi nhiệt cho hình dạng đã xem xét. Phân tích này thể hiện tiềm năng của một bộ trao đổi nhiệt tái sinh dạng đối lưu chéo nhỏ gọn với các baffle xoáy liên tục cho các hệ thống thông gió phân tán và đóng vai trò là cơ sở cho việc tối ưu hóa tiếp theo.

Từ khóa

#bộ trao đổi nhiệt #baffle xoáy #thu hồi nhiệt #hiệu suất #thông gió

Tài liệu tham khảo

Council of European Union (2018). Directive of the european parliament and of the council on the energy performance of buildings (recast) (COM/2021/802 final). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52021PC0802. Accessed 27 Dec 2023 Federal Ministry for Economic Affairs and Energy (BMWi) (2010). Energy efficiency made in germany. https://www.bmwk.de/Redaktion/EN/Publikationen/2010-energy-efficiency-made-in-germany.pdf?_blob=publicationFile&v=1. Accessed 27 Dec 2023 European Commission and Joint Research Centre and Martirano, G and Pignatelli, F and Vinci, F and Hernández Moral, G and Serna-González, V and Ramos-Díez, I and Valmaseda, C and Coors, V and Fitzky, M and Struck, C (2022). Comparative analysis of different methodologies and datasets for energy performance labelling of buildings. https://doi.org/10.2760/746342 Federal Ministry for Economic Affairs and Climate Action (BMWK) (2022). Renewable energy sources in figures national and international developments, 2021. https://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/Berichte/renewable-energy-sources-in-figures-2021.html Bell, K. J. (2005). Heat exchanger design for the process industries. Journal of Heat Transfer, 126(6), 877–885. https://doi.org/10.1115/1.1833366 Master, B. I., Chunangad, K. S., Boxma, A. J., Kral, D., & Stehlík, P. (2006). Most frequently used heat exchangers from pioneering research to worldwide applications. Heat Transfer Engineering, 27(6), 4–11. https://doi.org/10.1080/01457630600671960 Stehlík, P., & Wadekar, V. V. (2002). Different strategies to improve industrial heat exchange. Heat Transfer Engineering, 23(6), 36–48. https://doi.org/10.1080/01457630290098673 Reppich, M. & Zagermann, S. (1995). A new design method for segmentally baffled heat exchangers. Computers & Chemical Engineering, 19:137–142. European Symposium on Computer Aided Process Engineering 3-5. https://doi.org/10.1016/0098-1354(95)87028-8. El-Said, E. M. S., & Abou Al-Sood, M. M. (2019). Shell and tube heat exchanger with new segmental baffles configurations: A comparative experimental investigation. Applied Thermal Engineering, 150, 803–810. https://doi.org/10.1016/j.applthermaleng.2019.01.039 Li, H., & Kottke, V. (1999). Analysis of local shellside heat and mass transfer in the shell-and-tube heat exchanger with disc-and-doughnut baffles. International Journal of Heat and Mass Transfer, 42(18), 3509–3521. https://doi.org/10.1016/S0017-9310(98)00368-8 Zhang, J., Li, B., Huang, W.-T., Lei, Y. G., He, Y.-L., & Tao, W. (2009). Experimental performance comparison of shell-side heat transfer for shell-and-tube heat exchangers with middle-overlapped helical baffles and segmental baffles. Chemical Engineering Science, 64, 1643–1653. https://doi.org/10.1016/j.ces.2008.12.018 Sthelík, P., NěmčanskÝ, J., Kral, D., & Swanson, L. W. (1994). Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles. Heat Transfer Engineering, 15(1), 55–65. https://doi.org/10.1080/01457639408939818 Kral, D., Sthelík, P., ploeg, H. J. V. D., & Master, B. I. (1996). Helical baffles in shell-and-tube heat exchangers, part i: Experimental verification. Heat Transfer Engineering, 17(1), 93–101. https://doi.org/10.1080/01457639608939868 Yang, J.-F., Zeng, M., & Wang, Q.-W. (2014). Effects of sealing strips on shell-side flow and heat transfer performance of a heat exchanger with helical baffles. Applied Thermal Engineering, 64(1), 117–128. https://doi.org/10.1016/j.applthermaleng.2013.11.064 Salahuddin, U., Bilal, M., & Ejaz, H. (2015). A review of the advancements made in helical baffles used in shell and tube heat exchangers. International Communications in Heat and Mass Transfer, 67, 104–108. https://doi.org/10.1016/j.icheatmasstransfer.2015.07.005 Wang, Q., Chen, G., Chen, Q., & Zeng, M. (2010). Review of improvements on shell-and-tube heat exchangers with helical baffles. Heat Transfer Engineering, 31(10), 836–853. https://doi.org/10.1080/01457630903547602 Zhang, J.-F., Guo, S.-L., Li, Z.-Z., Wang, J.-P., He, Y.-L., & Tao, W.-Q. (2013). Experimental performance comparison of shell-and-tube oil coolers with overlapped helical baffles and segmental baffles. Applied Thermal Engineering, 58(1), 336–343. https://doi.org/10.1016/j.applthermaleng.2013.04.009 Cao, X., Zhang, R., Chen, D., Chen, L., Du, T., & Yu, H. (2021). Performance investigation and multi-objective optimization of helical baffle heat exchangers based on thermodynamic and economic analyses. International Journal of Heat and Mass Transfer, 176, 121489. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121489 Naqvi, S. & Wang, Q. (2019). Numerical comparison of thermohydraulic performance and fluid-induced vibrations for sthxs with segmental, helical, and novel clamping antivibration baffles. Energies, 12(3). https://doi.org/10.3390/en12030540 Peng, B., Wang, Q. W., Zhang, C., Xie, G. N., Luo, L. Q., Chen, Q. Y., & Zeng, M. (2007). An experimental study of shell-and-tube heat exchangers with continuous helical baffles. Journal of Heat Transfer, 129(10), 1425–1431. https://doi.org/10.1115/1.2754878 Wang, Q.-W., Chen, G.-D., Xu, J., & Ji, Y.-P. (2010). Second-law thermodynamic comparison and maximal velocity ratio design of shell-and-tube heat exchangers with continuous helical baffles. Journal of Heat Transfer, 132(10), 101801. https://doi.org/10.1115/1.4001755 Wang, Q., Chen, Q., Chen, G., & Zeng, M. (2009). Numerical investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles. International Journal of Heat and Mass Transfer, 52, 1214–1222. Lei, Y.-G., He, Y.-L., Li, R., & Gao, Y.-F. (2008). Effects of baffle inclination angle on flow and heat transfer of a heat exchanger with helical baffles. Chemical Engineering and Processing: Process Intensification, 47(12), 2336–2345. https://doi.org/10.1016/j.cep.2008.01.012 Kasi, G., Gnanasekar, S., Zhang, K., Kang, E. T., & Xu, L. Q. (2022). Polyurethane-based composites with promising antibacterial properties. Journal of Applied Polymer Science, 139(20), 52181. https://doi.org/10.1002/app.52181 Villani, M., Consonni, R., Canetti, M., Bertoglio, F., Iervese, S., Bruni, G., Visai, L., Iannace, S., Bertini, F. (2020). Polyurethane-based composites: Effects of antibacterial fillers on the physical-mechanical behavior of thermoplastic polyurethanes. Polymers, 12(2). https://doi.org/10.3390/polym12020362 Zhang, Y., Huang, L., Dong, T., Li, B., & Zhang, Y. (2022). Preparation, characterization and antibacterial properties of thermoplastic chitosan/nano zno composites. Materials Technology, 37(11), 1846–1853. https://doi.org/10.1080/10667857.2021.1990459 Cevallos, J. G., Bergles, A. E., Bar-Cohen, A., Rodgers, P., & Gupta, S. K. (2012). Polymer heat exchangers–history, opportunities, and challenges. Heat Transfer Engineering, 33(13), 1075–1093. https://doi.org/10.1080/01457632.2012.663654 Glade, H., Moses, D., Orth, T. D. (2018). Polymer Composite Heat Exchangers, pages 53–116. https://doi.org/10.1007/978-3-319-71641-1 2 Chen, H., Ginzburg, V. V., Yang, J., Yang, Y., Liu, W., Huang, Y., Du, L., Chen, B. (2016a). Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 59:41–85. Topical Volume Hybrids. https://doi.org/10.1016/j.progpolymsci.2016.03.001 Hussain, A. R. J., Alahyari, A. A., Eastman, S. A., Thibaud-Erkey, C., Johnston, S., & Sobkowicz, M. J. (2017). Review of polymers for heat exchanger applications: Factors concerning thermal conductivity. Applied Thermal Engineering, 113, 1118–1127. https://doi.org/10.1016/j.applthermaleng.2016.11.041 Chen, X., Su, Y., Reay, D., & Riffat, S. (2016). Recent research developments in polymer heat exchangers - a review. Renewable and Sustainable Energy Reviews, 60, 1367–1386. https://doi.org/10.1016/j.rser.2016.03.024 Krásný, I., Astrouski, I., & Raudenský, M. (2016). Polymeric hollow fiber heat exchanger as an automotive radiator. Applied Thermal Engineering, 108, 798–803. https://doi.org/10.1016/j.applthermaleng.2016.07.181 Smith, K. M., & Svendsen, S. (2015). Development of a plastic rotary heat exchanger for room-based ventilation in existing apartments. Energy and Buildings, 107, 1–10. https://doi.org/10.1016/j.enbuild.2015.07.061 Kragh, J., Rose, J., Nielsen, T., & Svendsen, S. (2007). New counter flow heat exchanger designed for ventilation systems in cold climates. Energy and Buildings, 39(11), 1151–1158. https://doi.org/10.1016/j.enbuild.2006.12.008 Diao, Y., Liang, L., Kang, Y., Zhao, Y., Wang, Z., & Zhu, T. (2017). Experimental study on the heat recovery characteristic of a heat exchanger based on a flat micro-heat pipe array for the ventilation of residential buildings. Energy and Buildings, 152, 448–457. https://doi.org/10.1016/j.enbuild.2017.07.045 Smith, K. M., & Svendsen, S. (2016). The effect of a rotary heat exchanger in room-based ventilation on indoor humidity in existing apartments in temperate climates. Energy and Buildings, 116, 349–361. https://doi.org/10.1016/j.enbuild.2015.12.025 Górecki, G., Ł e cki, M., Gutkowski, A. N., Andrzejewski, D., Warwas, B., Kowalczyk, M., Romaniak, A. (2021). Experimental and numerical study of heat pipe heat exchanger with individually finned heat pipes. Energies, 14(17). https://doi.org/10.3390/en14175317 Council of European Union (2014). Supplementing directive 2010/30/eu of the european parliament and of the council with regard to energy labelling of residential ventilation units (OJ L 337, 25.11.2014). http://data.europa.eu/eli/regdel/2014/1254/oj ANSYS(R) Academic Research CFD, Release 19.1, Help System. Fluent Theory Guide. ANSYS, Inc. Menter, F., Langtry, R., Völker, S., Huang, P. (2005). Transition modelling for general purpose CFD codes (pp. 31–48). https://doi.org/10.1016/B978-008044544-1/50003-0 Bahiraei, M., & Mazaheri, N. (2021). A comprehensive analysis for second law attributes of spiral heat exchanger operating with nanofluid using two-phase mixture model: Exergy destruction minimization attitude. Advanced Powder Technology, 32, 211–224. https://doi.org/10.1016/j.apt.2020.12.005 Gholamalizadeh, E., Hosseini, E., Jamnani, M. B., Amiri, A., saee, A. D., & Alimoradi, A. (2019). Study of intensification of the heat transfer in helically coiled tube heat exchangers via coiled wire inserts. International Journal of Thermal Sciences. https://doi.org/10.1016/j.ijthermalsci.2019.03.029 Pal, E., Kumar, I., Joshi, J. B., & Maheshwari, N. K. (2016). Cfd simulations of shell-side flow in a shell-and-tube type heat exchanger with and without baffles. Chemical Engineering Science, 143, 314–340. https://doi.org/10.1016/j.ces.2016.01.011 Menter, F. R., Langtry, R., Likki, S., Suzen, Y. B., Huang, P. G., Völker, S. (2006). A correlation-based transition model using local variables—part i: Model formulation. ASME: Journal of Turbomachinery, 128, 413–422. https://doi.org/10.1115/1.2184352 Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32, 1598–1605. https://doi.org/10.2514/3.12149 Rezaeiha, A., Montazeri, H. H., & Blocken, B. (2019). On the accuracy of turbulence models for cfd simulations of vertical axis wind turbines. Energy. https://doi.org/10.1016/j.energy.2019.05.053 Peng, D.-Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64. https://doi.org/10.1021/i160057a011 Caillou, S. & Van den Bossche, P. (2012). Heat recovery efficiency: Measurement and calculation methods. In The 33rd AIVC and 2nd TightVent Conference. Air Infiltration and Ventilation Centre (AIVC), Ghent. https://www.aivc.org/resource/heat-recovery-efficiency-measurement-and-calculation-methods El Maakoul, A., Laknizi, A., Saadeddine, S., Ben Abdellah, A., Meziane, M., & El Metoui, M. (2017). Numerical design and investigation of heat transfer enhancement and performance for an annulus with continuous helical baffles in a double-pipe heat exchanger. Energy Conversion and Management, 133, 76–86. https://doi.org/10.1016/j.enconman.2016.12.002 Saudia Basic Industries Corporation (SABIC) (2020). Lnp\(^{\rm tm\it }\) konduit\(^{\rm tm\it }\) compound ox11315. https://www.sabic.com/en/products/specialties/lnp-compounds-and-pc-copolymer-resins/lnp-konduit-compound Roache, P. J. (1997). Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29(1), 123–160. https://doi.org/10.1146/annurev.fluid.29.1.123. Accessed 27 Dec 2023 Roache, P. J. (1994). Perspective: A method for uniform reporting of grid refinement studies. Journal of Fluids Engineering, 116(3), 405–413. https://doi.org/10.1115/1.2910291 Franke, J. & Frank, W. (2008). Application of generalized richardson extrapolation to the computation of the flow across an asymmetric street intersection. Journal of Wind Engineering and Industrial Aerodynamics, 96(10):1616–1628. 4th International Symposium on Computational Wind Engineering (CWE2006). https://doi.org/10.1016/j.jweia.2008.02.003 Stern, F., Wilson, R. V., Coleman, H. W., & Paterson, E. G. (2001). Comprehensive approach to verification and validation of CFD simulations-Part 1: Methodology and procedures. Journal of Fluids Engineering, 123(4), 793–802. https://doi.org/10.1115/1.1412235