Heat pipe research and development in western Europe

Heat Recovery Systems and CHP - Tập 9 - Trang 19-66 - 1989
M. Groll1
1Institut für Kernenergetik & Energiesysteme (IKE), Universität Stuttgart, D-7000 Stuttgart 80, F.R.G.

Tài liệu tham khảo

Busse, 1986, Pressure recovery in cylindrical condensers Haug, 1984, Druckrückgewinn in einem zylindrischen Wärmerohr bei hohen radialen Reynoldszahlen und hohen Machzahlen Weber-Carstanjen, 1987, Flooding in a gravity assisted visualization heat pipe Busse, 1987, The gas dynamic heat transformer: a feasibility study Groll, 1984, Heat recovery units employing reflux heat pipes as components Gross, 1987, Condensation heat transfer inside a closed thermosyphon—generalized correlation of experimental data Gross, 1983, Der Wärmeübergang in einem geschlosenen Thermosyphon, der Fluid nahe dem thermodynamisch kritischen Zustand enthält Unk, 1987, A contribution to calculating the optimum quantity for filling a closed two-phase thermosyphon Delil, 1984, Limitations in variable conductance heat pipe performance and control predicted by the current steady state model developed at NLR. NLR MP 84009 U Delil, 1983, Uniaxial model for gas loaded variable conductance heat pipe performance: the effects of vapour flow friction and inertia Van Buggenum, 1987, Development/manufacture and testing of a gas loaded variable conductance methanol heat pipe Ruel, 1987, Two-dimensional modelling of porous heat pipes Groll, 1984, Evaporation heat transfer of sodium from capillary structures Rice, 1987, Influence of fine mesh on entrainment in heat pipes Heine, 1987, Formation of passive layers on boiler steel and stainless steel used as structural materials in water heat pipes Rösler, 1987, Life testing with stainless steel ammonia and aluminium/ammonia heat pipes Coesel, 1984, Heat pipe trade-off for a 1 kW radiator Pennings, 1987, Design and development of the advanced heat pipe radiator Delil, 1986, Quality monitoring in two-phase heat transport systems for a large spacecraft Delil, 1987, Feasibility demonstration of a sensor for high-quality two-phase flow, NLR TR 87 009 U Koch, 1984, A European heat pipe experiment on the second flight of the Space Shuttle “Challenger” Kreeb, 1984, Heat pipe experiment on SPAS-01 Savage, 1984, ESTEC heat pipe experiment on SPAS-01 Groll, 1984, Heat pipe experiments on the first Shuttle Pallet Satellite (SPAS-01) Meyer, 1985, Excess liquid formation in orbit test results of axially grooved heat pipes, AIAA-85-1011 Bontemps, 1987, Performance limits of toluene loaded, closed two-phase thermosyphon Chaudourne, 1987, Theoretical and experimental study of a high temperature heat pipe heat exchanger application to a 1300 kW recuperator Lebeau, 1987, Water-water heat exchangers using heat pipes Münzel, 1987, Heat pipes for heat recovery from exhaust gas of a diesel engine in a passanger car Algar, 1985, Status of the Dungeness B project, Nucl. Energy, 24, 299 Brost, 1982, A new heat pipe application: A heat pipe regenerator heater for a molecular sieve system, Heat Recovery Systems, 2, 391, 10.1016/0198-7593(82)90027-3 Asselmann, 1982, A refrigerator-freezer with heat pipe, Philips tech. Rev., 40, 350 Weidemann, 1979, Wärmerohrgekühlter Asynchronmotor mit Stromrichterspeisung als Bahnantrieb, Ph.D. Thesis Thoren, 1985, Verschiedenartige Wärmerohr-Systeme zur Kühlung von Asynchronmaschinen, Ph.D. Thesis Giessler, 1987, Heat pipe cooling of electrical machines Brost, 1984, Heat pipes for electric motors Bloem, 1982, An evacuated tubular solar collector incorporating a heat pipe, Philips tech. Rev., 40, 181 De Beni, 1981, Device for passive downward heat transport: design criteria and operational results De Beni, 1985, Passive downward transport: experimental results of a technical unit, Sol. Energy, 34, 127, 10.1016/0038-092X(85)90169-0 Bellaiche, 1984, A heat pipe furnace Bricard, 1987, Heat pipe furnace for micro-gravity experiments: thermal and mechanical qualifications Brost, 1984, Development of a heat pipe gradient furnace Brost, 1987, Development of a high temperature furnace with variable conductance heat pipe Busse, 1975, The gas controlled heat pipe: a temperature-pressure transducer Busse, 1982, A new generation of precision furnaces, Temperature, 1265 Bassani, 1981, Progress on gas controlled heat pipe precision furnaces for temperatures up to 1100°C Pokerznik, 1986 Pokerznik, 1986, Aufbau und Funktion widerstandsbeheizter Öfen nach dem Heat-Pipe-Prinzip. elektrowärme internat., 44, B44 ff Bassani, 1986, Druckgesteuertes Wärmerohr. Europäisches Brost, 1981, New heat pipe applications Alleau, 1984, Sodium heat pipes for the energy supply of a Stirling engine Alleau, 1987, Stirling engine with a sodium boiler Dunn, 1982, 20 kW U.K. Consortium engine—specification and manufacture Rice, 1983, U.K. Consortium Stirling engine-regenerator effectiveness and heater performance Meijer, 1974, The potential of the Philips Stirling engine for pollution reduction and energy conservation Asselmann, 1977, Design considerations on a thermal energy storage Stirling engine automobile Brost, 1978, Technical applications of heat pipes Unk, 1985, Einsatzmöglichkeiten von Wärmerohren in der Kerntechnik, Atomkernenergie Kerntechnik, 46 Ralph, 1986, Tests on an electrically heated sodium heat pipe for temperature control of irradiation experiments in the U.K. prototype fast reactor