Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation

R G Berman1, Thomas H. Brown1
1Department of Geological Sciences, University of British Columbia, Vancouver, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson CT (1934) The heat capacities of magnesium, zinc, lead, manganese and iron carbonates at low temperatures. J Am Chem Soc 56:849?851

Anderson CT (1936) The heat capacities of quartz, cristobalite and tridymite at low temperatures. J Am Chem Soc 58:568?570

Barron THK, Berg WT, Morrison JA (1959) On the heat capacity of crystalline magnesium oxide. Proc R Soc London A250:70?83

Bennington KO, Ferrante MJ, Stuve JM (1978) Thermodynamic data on the amphibole asbestos minerals amosite and crocido-lite. US Bur Mines Rep Inv 8265:30p

Bennington KO, Beyer RP, Brown RR (1984) Thermodynamic properties of hedenbergite, a complex silicate of Ca, Fe, Mn, and Mg. US Bur Mines Rep Inv 8873:19p

Berman RG, Brown TH (1983) A revised equation for representation and high temperature extrapolation of the heat capacity of minerals. EOS 64:875

Berman RG, Brown TH (1984) A thermodynamic model for multicomponent melts, with application to the system CaO-Al2O3-SiO2. Geochim Cosmochim Acta 45:661?678

Berman RG, Brown TH, Engi M (1984) A thermodynamic data base for minerals: I. A linear programming analysis of experimental data in a ten component system. Proc IUPAC Conf Chem Therm: paper 180

Beyer RP, Ferrante MJ, Brown RR, Daut GE (1980) Thermodynamic properties of potassium metasilicate and disilicate. US Bur Mines Rep Inv 8410:21p

Birch F (1966) Compressibility; elastic constants. In: Clark SP (ed) Handbook of Physical Constants, Geol Soc Am Mem 97:97?173

Boltzmann L (1871) Einige allgemeine Sätze über Wärmegleichgewicht. Sitzungsber K Akad Wiss Wien 63:679?711

Bonnickson KR (1954) High-temperature heat contents of calcium and magnesium ferrites. Am Chem Soc J 76:1480?1482

Bonnickson KR (1955a) High temperature heat contents of aluminates of calcium and magnesium. J Phys Chem 59:220?221

Bonnickson KR (1955b) High temperature heat contents of some titanates of aluminum, iron and zinc. Am Chem Soc J 77:2152?2154

Coughlin JP, King EG, Bonnickson KR (1951) High-temperature heat contents of ferrous oxide, magnetite and ferric oxide. Am Chem Soc J 73:3891?3893

Coughlin JP, O'Brien CJ (1957) High temperature heat contents of calcium orthosilicate. J Phys Chem 61:767?769

Debye P (1912) Zur Theorie der spezifischen Wärmen. Ann Phys 39:789?839

Ditmars DA, Douglas TB (1971) Measurement of the relative enthalpy of pure ?-Al2O3 (NBS heat capacity and enthalpy standard reference material no. 720) from 273 to 1,173 K. J Res Nat Bur Stand 75A:401?420

Einstein A (1907) Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann Phys 22:180?190

Elsner von Gronow H, Schwiete HE (1933) Die spezifischen Wärmen von CaO, Al2O3, CaO·Al2O3, 3CaO·Al2O3, 2CaO·SiO2, 3CaO·SiO2, 2CaO·Al2O3·SiO2 von 20 bis 1,500 C. Z Anorg Allg Chem 216:185?195

Ghiorso MS, Carmichael ISE, Moret LK (1979) Inverted hightemperature quartz. Unit cell parameters and properties of the alpha-beta inversion. Contrib Mineral Petrol 68:307?323

Ghiorso MS, Carmichael ISE, Rivers ML, Sack RO (1983) The Gibbs free energy of mixing of natural silicate liquids: an expanded regular solution approximation for the calculation of magmatic intensive variables. Contrib Mineral Petrol 84:107?145

Giauque WF, Archibald RC (1937) The entropy of water from the third law of thermodynamics. The dissociation pressure and calorimetric heat of the reaction Mg(OH)2 = MgO + H2O. The heat capacities of Mg(OH)2 and MgO from 20 to 300 K. Am Chem Soc J 59:561?569

Gmelin E (1969) Thermal properties of alkaline-earth-oxides. Z Naturforsch 24A:1794?1800

Gronvold F, Samuelson EJ (1975) Heat capacity and thermodynamic properties of ?-Fe2O3 in the region 300?1,050 K. J Phys Chem Solids 36:249?256

Gronvold F, Sveen A (1974) Heat capacity and thermodynamic properties of synthetic magnetite (Fe3O4) from 300 to 1,050 K. Ferrimagnetic transition and zero-point entropy. J Chem Thermodyn 6:859?872

Gronvold F, Westrum EF Jr (1959) ?-ferric oxide: low temperature heat capacity and thermodynamic functions. Am Chem Soc J 81:1780?1783

Haas JL Jr, Fisher JR (1976) Simultaneous evaluation and correlation of thermodynamic data. Am J Sci 276:525?545

Haas JL Jr, Robinson GR Jr, Hemingway BS (1981) Thermodynamic tabulations for selected phases in the system CaO-Al2O3-SiO2-H2O at 101.325 kPa (1atm) between 273.15 and 1,800 K. J Phys Chem Ref Data 10:576?669

Haselton HT Jr (1979) Calorimetry of synthetic pyrope-grossular garnets and calculated stability relations. Doctoral Thesis, University of Chicago

Haselton HT Jr, Hemingway BS, Robie RA (1984) Low-temperature heat capacities of CaAl2SiO6 glass and pyroxene and thermal expansion of CaAl2SiO6 pyroxene. Am Mineral 69:481?489

Haselton HT Jr, Hovis GL, Hemingway BS, Robie RA (1983) Calorimetric investigation of the excess entropy of mixing in analbite-sanidine solid solutions: lack of evidence for Na, K short-range order and implications for two-feldspar thermometry. Am Mineral 68:398?413

Haselton HT Jr, Westrum EF Jr (1980) Low-temperature heat capacities of synthetic pyrope, grossular, and pyrope60grossular40. Geochim Cosmochim Acta 44:701?709

Hatton WE, Hildenbrand DL, Sinke GC, Stull DR (1959) The chemical thermodynamic properties of calcium hydroxide. Am Chem Soc J 81:5028?5030

Helgeson HC, Delaney JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278A:229p

Hemingway BS, Krupka KM, Robie RA (1981) Heat capacities of the alkali feldspars between 350 and 1,000 K from differential scanning calorimetry, the thermodynamic functions of the alkali feldspars from 298.15 to 1,400 K, and the reaction quartz + jadeite = analbite. Am Mineral 66:1202?1215

Hemingway BS, Robie RA (1984a) Heat capacity and thermodynamic functions for gehlenite and staurolite: with comments on the Schottky anomaly in the heat capacity of staurolite. Am Mineral 69:307?318

Hemingway BS, Robie RA (1984b) Thermodynamic properties of zeolites: low-temperature heat capacities and thermodynamic functions for phillipsite and clinoptilolite. Estimates of the thermochemical properties of zeolitic water at low temperature. Am Mineral 69:692?700

Hemingway BS, Robie RA, Fisher JR, Wilson WH (1977) Heat capacities of gibbsite, Al(OH)3, between 13 and 480 K and magnesite, MgCO3, between 13 and 380 K and their standard entropies at 298.15 K and the heat capacities of calorimetry conference benzoic acid between 12 and 316 K. J Res USGS 5:797?806

Hemingway BS, Robie RA, Kittrick JA (1978) Revised values for the Gibbs free energy of formation of [Al(OH) 4 ? aq], diaspore, boehmite and bayerite at 298.15 K and 1 bar, the thermodynamic properties of kaolinite to 800 K and 1 bar, and the heats of solution of several gibbsite samples. Geochim Cosmochim Acta 42:1533?1543

Hemingway BS, Robie RA, Kittrick JA, Grew ES, Nelen JA, London D (1984) The heat capacities of osumilite from 298.15 to 1,000 K, the thermodynamic properties of two natural chlorites to 500 K, and the thermodynamic properties of petalite to 1,800 K. Am Mineral 69:701?710

Henderson CE, Essene EJ, Anovitz LM, Westrum EF Jr, Hemingway BS, Bowman JR (1983) Thermodynamics and phase equilibria of clinochlore, (Mg5Al)(Si3Al)O10(OH)8. EOS 64:466

Holland TJB (1979) Experimental determination of the reaction paragonite = jadite + kyanite + H2O, and internally consistant thermodynamic data for part of the system Na2O-Al2O3-SiO2-H2O, with applications to eclogites and blueschists. Contrib Mineral Petrol 68:293?301

Holland TJB (1981) Thermodynamic analysis of simple mineral systems. In: Newton RC, Navrotsky A, Wood BJ (ed) Thermodynamics of Minerals and Melts. Springer Berlin Heidelberg New York, pp 19?34

Huckenholz HG, Holzl E, Lindhuber W (1975) Grossularite, its solidus and liguidus relations in the CaO-Al2O-SiO2-H2O system up to 10 kbar. Neues Jahrb Mineral Abh 124:1?46

Jacobs GK, Kerrick DM, Krupka KM (1981) The high temperature heat capacity of natural calcite (CaCO3). Phys Chem Mineral 7:55?59

Johnson GK, Flotow HE, O'Hare PAG (1982) Thermodynamic studies of zeolites: analcime and dehydrated analcime. Am Mineral 67:736?748

Johnson GK, Flotow HE, O'Hare PAG (1983) Thermodynamic studies of zeolites: natrolite, mesolite and scolecite. Am Mineral 68:1134?1145

Kelley KK (1939) The specific heats at low temperatures of crystalline ortho-, meta-, and disilicates of sodium. Am Chem Soc J 61:471?473

Kelley KK (1943) Specific heats at low temperatures of magnesium orthosilicate and magnesium metasilicate. Am Chem Soc J 65:339?341

Kelley KK (1960) Contributions to the data on theoretical metallurgy. XIII. High-temperature heat-content, heat-capacity, and entropy data for the elements and inorganic compounds. US Bur Mines Bull 584:232p

Kelley KK, Naylor BF, Shomate CH (1946) Thermodynamic properties of manganese. US Bur Mines Tech Pap, 686:34p

Kelley KK, Todd SS, Orr RL, King EG, Bonnickson KR (1953) Thermodynamic properties of sodium-aluminum and potassium-aluminum silicates. US Bur Mines Rep Inv 4955, 21p

King EG (1954) Heat capacities at low temperatures and entropies at 298.16 K of calcium and magnesium ferrites. Am Chem Soc J 76:5849?5850

King EG (1955a) Heat capacities at low temperatures and entropies at 298.16 K of crystalline calcium and magnesium aluminates. J Phys Chem 59:218?219

King EG (1955b) Low-temperature heat capacties and entropies at 298.16 K of some titanates of aluminum, calcium, lithium and zinc. Am Chem Soc J 77:2150?2152

King EG (1957) Low temperature heat capacities and entropies at 298.15 K of some crystalline silicates containing calcium. Am Chem Soc J 79:5437?5438

King EG, Barany R, Weller WW, Pankratz LB (1967) Thermodynamic properties of forsterite and serpentine. US Bur Mines Rep Inv 6962:19p

King EG, Ferrante MJ, Pankratz LB (1975) Thermodynamic data for Mg(OH)2 (brucite). US Bur Mines Rep Inv 8041:13p

King EG, Orr RL, Bonnickson KR (1954) Low temperature heat capacity, entropy at 298.16 K, and high temperature heat content of sphene (CaTiSiO5). Am Chem Soc J 76:4320?4321

King EG, Weller WW (1961a) Low temperature heat capacities and entropies at 298.15 K of diaspore, kaolinite, dickite, and halloysite. US Bur Mines Rep Inv 5810:6p

King EG, Weller WW (1961b) Low temperature heat capacities and entropies at 298.15 K of some sodium-and calcium-aluminum silicates. US Bur Mines Rep Inv 5855:8p

Kiseleva IA, Topor ND, Andreyenko ED (1974) Thermodynamic parameters of minerals of the epidote group. Geochem Int 11:389?398

Kiseleva IA, Topor ND, Melchakova LV (1972) Experimental determination of heat content and heat capacity in grossular, andradite, and pyrope. Geokhimiya II:1372?1379

Ko HC, Ferrante MJ, Stuve JM (1977) Thermophysical properties of acmite. Proc 7th Symp Thermophys Properties. Am Soc Mech Eng:392?395

Kobayashi K (1950) The heat capacities of inorganic substances at high temperatures. Part II. The heat capacity of calcium hydroxide. Sci Rep Tohoku Univ 34:153?159

Kobayashi K (1951) The heat capacities of inorganic substances at high temperatures. Part IV: The heat capacity of synthetic aragonite (calcium carbonate). Sci Rep Tohoku Univ 35:111?118

Kolesnik YN, Nogteva VV, Arkhipenko DK, Orekhov BA, Paukov IY (1979) Thermodynamics of pyrope-grossular solid solutions and the specific heat of grossular at 13?300 K. Geochem Int 16:57?64

Krupka KM, Robie RA, Hemingway BS (1979) High-temperature heat capacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite, pyrophyllite, KAlSi3O8 glass, grossular, and NaAlSi3O8 glass. Am Mineral 64:86?101

Krupka MK, Robie RA, Hemingway BS, Kerrick DM, Ito J (1985a) Low-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, enstatite, bronzite, and wollastonite. Am Mineral (in press)

Krupka MK, Robie RA, Hemingway BS, Kerrick DM, Ito J (1985b) High-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, tremolite, and wollastonite. Am Mineral (in press)

Lander JJ (1951) Experimental heat contents of SrO, BaO, CaO, BaCO3 and SrCO3 at high temperatures. Dissociation pressures of BaCO3 and SrCO3. Am Chem Soc J 73:5794?5797

Lane DL, Ganguly J (1980) Al2O3 solubility in orthopyroxene in the system MgO-Al2O3-SiO2: A reevaluation, and mantle geotherm. J Geophys Res 85:6963?6972

Maier CG, Kelley KK (1932) An equation for the representation of high temperature heat content data. Am Chem Soc J 54:3243?3246

Mraw SC, Naas DF (1979) The measurement of accurate heat capacities by differential scanning calorimetry. Comparison of DSC results on pyrite (100 to 800 K) with literature values from precision adiabatic calorimetry. J Chem Thermodyn 11:567?584

Naylor BF (1945a) High-temperature heat contents of sodium metasilicate and sodium disilicate. Am Chem Soc J 67:466?467

Naylor BF (1945b) High-temperature heat contents of Na2TiO3, Na2Ti2O5 and Na2Ti3O7. J Am Chem Soc 67:2120?2122

Naylor BF (1946) High-temperature heat contents of TiO, Ti2O3, Ti3O5, and TiO2. Am Chem Soc J 68:1077?1080

Naylor BF, Cook OA (1946) High temperature heat contents of the metatitanites of calcium, iron, and magnesium. J Am Chem Soc 68:1003?1005

Newton RC, Thompson AB, Krupka KM (1979) Heat capacity of synthetic Mg3Al2Si3O12 from 350 to 1,000 K and the entropy of pyrope. EOS 58:523

O'Neill MJ (1966) Measurement of specific heat functions by differential scanning calorimetry. Anal Chem 38:1331?1336

Openshaw RE, Hemingway BS, Robie RA, Waldbaum DR, Krupka KM (1976) The heat capacity at low temperatures and entropies at 298.15 K of low albite, analbite, microcline, and sanidine. J Res USGS 4:195?204

Orr RL (1953) High temperature heat contents of magnesium orthosilicate and ferrous orthosilicate. Am Chem Soc J 75:528?529

Pankratz LB (1964) High-temperature heat contents and entropies of muscovite and dehydrated muscovite. US Bur Mines Rep Inv 6371:6p

Pankratz LB (1968) High-temperature heat contents and entropies of dehydrated analcite, kaliophilite, and leucite. US Bur Mines Rep Inv 7073:8p

Pankratz LB, Kelley KK (1963) Thermodynamic data for magnesium oxide (periclase). US Bur Mines Rep Inv 6295: 5p

Pankratz LB, Kelley KK (1964a) High-temperature heat contents and entropies of andalusite, kyanite, and sillimanite. US Bur Mines Rep Inv 6370:7p

Pankratz LB, Kelley KK (1964b) High-temperature heat contents and entropies of akermanite, cordierite, gehlenite, and merwinite. US Bur Mines Rep Inv 6555:7p

Pankratz LB, Weller WW, Kelley KK (1963) Low-temperature heat capacity and high temperature heat content of mullite. US Bur Mines Rep Inv 6287:7p

Perkins D III, Essene EJ, Westrum EF Jr, Wall VJ (1979) New thermodynamic data for diaspore and their application to the system Al2O3-SiO2-H2O. Am Mineral 64:1080?1090

Perkins D III, Westrum EF Jr, Essene EJ (1980) The thermodynamic properties and phase relations of some minerals in the system CaO-Al2O3-SiO2-H2O. Geochim Cosmochim Acta 44:61?84

Petit AT, Dulong PL (1819) Recherches sur quelques points importants de la theorie de la chaleur. Ann Chim Phys 10:395?413

Raz U (1983) Thermal and volumetric measurements on quartz and other substances at pressures up to 6 kbars and temperatures up to 700° C. Doctoral Thesis, Swiss Fed Inst Tech Zurich 7386

Richet P, Bottinga Y (1982) Modèles de calcul des capacités calorifigues des verres et des liguides silicatés. CR Acad Sci 295, 1121?1124

Richet P, Bottinga Y, Denielou L, Petitet JP, Tequi C (1982) Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1,000 and 1,800 K and a review from 0 to 2,000 K. Geochim Cosmochim Acta 46:2639?2658

Richet P, Bottinga Y, Tequi C (1984) Heat capacity of sodium silicate liquids. J Am Ceram Soc 88:C6-C8

Robie RA, Bethke PM, Beardsley KM (1967) Selected x-ray crystallographic data, molar volumes, and densities of minerals and related substances. USGS Bull 1248:87p

Robie RA, Finch CB, Hemingway BS (1982a) Heat capacity and entropy of fayalite (Fe2SiO4) between 5.1 and 383 K: comparison of calorimetric and equilibrium values for the QFM buffer reaction. Am Mineral 67:463?469

Robie RA, Haselton HT Jr, Hemingway BS (1984) Heat capacities and entropies of rhodochrosite (MnCO3) and siderite (FeCO3) between 5 and 600 K. Am Mineral 69:349?357

Robie RA, Hemingway BS (1984) Entropies of kyanite, andalusite, and sillimanite: additional constraints on the pressure and temperature of the Al2SiO5 triple point. Am Mineral 69:298?306

Robie RA, Hemingway BS, Fisher JR (1979) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. USGS Bull 1452:456p

Robie RA, Hemingway BS, Takei H (1982b) Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. Am Mineral 67:470?482

Robie RA, Hemingway BS, Wilson WH (1976) The heat capacities of calorimetry conference copper and of muscovite KAl2(Al-Si3)O10(OH)2, pyrophyllite Al2Si4O10(OH)2, and illite K3(Al7Mg)(Si14Al2)O40(OH)8 between 15 and 375 K and their standard entropies at 298.15 K. J Res USGS 4:631?644

Robie RA, Hemingway BS, Wilson WH (1978) Low-temperature heat capacities and entropies of feldspar glasses and of anorthite. Am Mineral 63:109?123

Robie RA, Stout JW (1963) Heat capacity from 12 to 305 K and entropy of talc and tremolite. J Phys Chem 67:2252?2256

Robinson GR Jr, Haas JL Jr (1983) Heat capacity, relative enthalpy, and calorimetric entropy of silicate minerals: an empirical method of prediction. Am Mineral 68:541?553

Robinson GR Jr, Haas JL Jr, Schafer CM, Haselton HT Jr (1982) Thermodynamic and thermophysical properties of selected phases in the MgO-SiO2-H2O-CO2, CaO-Al2O3-SiO2-H2O-CO2, Fe-FeO-Fe2O3-SiO2 chemical systems, with special emphasis on the properties of basalts and their mineral components. USGS Open-file Rep 83-79:429p

Sharp ZD, Metz GW, Anovitz LM, Essene EJ, Westrum EF Jr, Valley JW (1983) The heat capacity and phase equilibria of monticellite. EOS 64:466

Shomate CH (1946) Heat capacities at low temperatures of the metatitanates of iron, calcium and magnesium. Am Chem Soc J 68:964?966

Shomate CH (1947) Heat capacities at low temperatures of titanium dioxide (rutile and anatase). Am Chem Soc J 69:218?219

Shomate CH, Cook OA (1946) Low-temperature heat capacities and high-temperature heat contents of Al2O3·3H2O and Al2O3·H2O. Am Chem Soc J 68:2140?2140

Skinner BJ (1966) Thermal expansion. In: Clark SP (ed) Handbook of Physical Constants, Geol Soc Am Mem 97:75?96

Southard JC (1941) A modified calorimeter for high temperatures. The heat content of silica, wollastonite and thorium dioxide above 25°. Am Chem Soc J 63:3142?3146

Staveley LAK, Linford RG (1969) The heat capacity and entropy of calcite and aragonite, and their interpretation. J Chem Thermodyn 1:1?11

Stebbins JF, Carmichael ISE, Moret LK (1984) Heat capacities and entropies of silicate liquids and glasses. Contrib Mineral Petrol 86:131?148

Stebbins JF, Carmichael ISE, Weill DE (1983) The high temperature liquid and glass heat contents and the heats of fusion of diopside, albite, sanidine and nepheline. Am Mineral 68:717?730

Stout JW, Robie RA (1963) Heat capacity from 11 to 300 K, entropy, and heat of formation of dolomite. J Phys Chem 67:2248?2252

Sumino Y, Anderson OL, Suzuki I (1983) Temperature coefficients of elastic constants of single crystal MgO between 80 and 1,300 K. Phys Chem Min 9:38?47

Thompson AB, Wennemer M (1979) Heat capacities and inversions in tridymite, cristobalite, and tridymite-cristobalite mixed phases. Am Mineral 64:1018?1026

Todd SS (1951) Low-temperature heat capacities and entropies at 298.16 K of crystalline calcium orthosilicate, zinc orthosilicate and tricalcium silicate. Am Chem Soc J 73:3277?3278

Todd SS (1952) Low temperature heat capacities and entropies at 298.16 K of magnesium orthotitanate and magnesium dititanate. Am Chem Soc J 74:4669?4670

Todd SS, Bonnickson KR (1951) Low temperature heat capacities and entropies at 298.16 K of ferrous oxide, manganese oxide and vanadium monoxide. J Am Chem Soc 73:3894?3895

Todd SS, King EG (1953) Heat capacities at low temperatures and entropies at 298.16 K of titanomagnetite and ferric titanate. Am Chem Soc J 75:4547?4549

Victor AC, Douglas TB (1963) Themodynamic properties of magnesium oxide and beryllium oxide from 298 to 1,200 K. J Res Nat Bur Stand 67A:325?329

Wagner H (1932) Zur Thermochemie der Metasilikate des Calciums und Magnesiums und des Diopsids. Z Anorg Allg Chem 208:1?22

Waldbaum DR (1973) The configurational entropies of Ca2Mg-Si2O7-Ca2SiAl2O7 melilites and related minerals. Contrib Mineral Petrol 39:33?54

Weller WW, Kelley KK (1963) Low-temperature heat capacities and entropies at 298.15 K of akermanite, cordierite, gehlenite, and merwinite. US Bur Mines Rep Inv 6343:7p

Westrum EF Jr, Essene EJ, Perkins D III (1979) Thermophyical properties of the garnet, grossular: Ca3Al2Si3O12. J Chem Thermodyn 11:57?66

Westrum EF, Gronvold F (1969) Magnetite (Fe3O4). Heat capacity and thermodynamic properties from 5 to 350 K, low-temperature transition. J Chem Thermodyn 1:543?557

White WP (1919) Silicate specific heats. Am J Sci 47:1?21

Winter JK, Ghose S (1979) Thermal expansion and high temperature crystal chemistry of the Al2SiO5 polymorphs. Am Mineral 64:573?586